
1

Last Updated 9/1/2009 11:31:00 PM

Compiling OpenSSL for Ubuntu and for the OmniFlash

Table of Contents
Introduction ..2

Getting Started..2

Getting the OpenSSL Source Code..3

Extracting the Source.. 4

Compiling the Source..5

Installing the libraries..8

Compiling OpenSSL For the OmniFlash ARM..9

Editing the Makefile..10

Building the source ...11

Installing the ARM version..12

Creating a Test Program for Linux (OpenSSL Client)...12

Getting a sample client source code file...14

Compiling the Client program...18

Creating a Test Program for the OmniFlash (OpenSSL Server)...29

Getting a sample server source code file..29

Code changes to make it compile ...43

Multithreaded support ...46

Generating an SSL certificate and Key ..47

Copying files to the OmniFlash ...49

Testing our server and client programs..55

2

Last Updated 9/1/2009 11:31:00 PM

Introduction
This document describes how to Compile and install the OpenSSL libraries on Ubuntu Linux. It also

describes how to cross compile it for the OmniFlash ARM processor.

Getting Started
Make sure you have a working Ubuntu Environment. Please refer to the document "Installing and

configuring Ubuntu Linux.docx". Make sure you have the cross compiler installed for the ARM

processor. Please see the document "Configuring Ubuntu to Code for the OmniFlash or OmniEP.docx".

Before we begin, if you are running Ubuntu in a Virtual machine, in order to communicate with the

OmniFlash over the network, we must be on the same physical network.

Make sure your Virtual Machine's network type is Bridged Adapter or we won't be able to communicate.

3

Last Updated 9/1/2009 11:31:00 PM

Getting the OpenSSL Source Code
You can download the source code from: http://www.openssl.org/source and clicking on the Latest.

Save the file to your system somewhere.

4

Last Updated 9/1/2009 11:31:00 PM

Extracting the Source

Now right-click on the file and select Extract here.

5

Last Updated 9/1/2009 11:31:00 PM

Compiling the Source

Open a terminal so we can build the source code.

cd into the folder we just extracted.

6

Last Updated 9/1/2009 11:31:00 PM

Type ./config and press enter to configure the makefile.

Now type make to build the libraries.

7

Last Updated 9/1/2009 11:31:00 PM

Verify that there were no errors. Now type make test.

8

Last Updated 9/1/2009 11:31:00 PM

Installing the libraries

And finally, we need to install the libraries where we can get to them. We do this by typing sudo

make install . Enter your password when prompted.

9

Last Updated 9/1/2009 11:31:00 PM

You now have OpenSSL installed for Ubuntu Linux.

Compiling OpenSSL For the OmniFlash ARM
After we are done building the source for Ubuntu Linux, we need to recompile it for the ARM processor.

Open up a terminal window (if you closed the above window) to the area where the source code is

extracted to.

Now type make clean to clean up our area.

Next configure the makefile for generic linux and specify where you want your output to end up at.

Type ./Configure linux-generic32 --openssldir=/usr/local/arm/ssl

10

Last Updated 9/1/2009 11:31:00 PM

Editing the Makefile

Now we need to edit the Makefile and adjust the compiler settings to use the ARM compiler. Type

gedit Makefile and press enter.

Scroll down to the lines shown above. We need to alter these to point to the ARM version.

11

Last Updated 9/1/2009 11:31:00 PM

Change the path and compiler names to match those above. The prefix is where we installed the

compiler to earlier. If you are using another ARM compiler, change the paths and executable names to

match the one you are using.

Save the file and exit.

Building the source

Now type make to start the build process.

12

Last Updated 9/1/2009 11:31:00 PM

Installing the ARM version

Type sudo make install to install it to the directory we set in the configuration above. Type your

password if asked.

We should end up with no errors and OpenSSL configured and installed for us.

Creating a Test Program for Linux (OpenSSL Client)
Now let's take one of the sample programs compile it.

13

Last Updated 9/1/2009 11:31:00 PM

Launch CodeBlocks

Click Create a new project.

14

Last Updated 9/1/2009 11:31:00 PM

Click Console application and Go.

Click C style and click Next.

Type in a project a project name and choose a folder to create the project in.

Click Next until you get to the Finish button and click Finish.

Getting a sample client source code file

Now we need to get a copy of the client sample SSL program. Minimize CodeBlocks and open up a file

explorer.

15

Last Updated 9/1/2009 11:31:00 PM

Navigate to the folder where you extracted the source code to. The client test program will be under

the demos/ssl folder of the source folder. Copy the file cli.cpp to your project's folder.

This picture shows that I copied the file cli.cpp to my project's folder. While we are here, we need to do

some cleanup.

1.) Delete main.c . We won't be using it.

16

Last Updated 9/1/2009 11:31:00 PM

2.) Rename the extension on cli.cpp to cli.c . CPP programs complicate the process and it is beyond the

scope of this document.

This screen shot shows the renamed file and main.c deleted.

17

Last Updated 9/1/2009 11:31:00 PM

Now open up CodeBlocks again. Find main.c and right-click on it and select Remove file from project.

Next we need to add in the client source code. Right-click on the Project name and click Add files...

18

Last Updated 9/1/2009 11:31:00 PM

Click on the file and click Open.

Click the Select All button and then OK

Compiling the Client program

Next we need to add in the OpenSSL libraries so we can build and run the program.

19

Last Updated 9/1/2009 11:31:00 PM

Click on Project -> Build options...

Select the Debug target from the left. Click on the Linker settings tab. Click the Add button to add in

some libraries.

Type dl and press OK.

20

Last Updated 9/1/2009 11:31:00 PM

Do the same step and add in ssl

And add crypto

NOTE: ssl must come before crypto or you will get linker errors. If you get the

order wrong, there are arrows just to the right side of the window where you

can move libraries up and down.

21

Last Updated 9/1/2009 11:31:00 PM

You should now have these three libraries listed. Now click the Copy all to... button so we can copy

them to the Release build.

Click Release and click OK.

22

Last Updated 9/1/2009 11:31:00 PM

Click the Search directories tab and the compiler tab and click the Add button.

Type /usr/local/ssl/include and press OK.

23

Last Updated 9/1/2009 11:31:00 PM

Click the Copy all to... button

Click the Release target and click OK.

24

Last Updated 9/1/2009 11:31:00 PM

Click the Search directories and then click the Linker tab. Click Add.

Change the directory to /usr/local/ssl/lib and click OK.

25

Last Updated 9/1/2009 11:31:00 PM

Add another one and type in the name /usr/lib and click OK.

Click the Copy all to... button.

26

Last Updated 9/1/2009 11:31:00 PM

Click the Release target and click OK.

Now click OK to save all the settings.

Next, there are a couple warnings we need to get rid of in the code to get a clean compile.

27

Last Updated 9/1/2009 11:31:00 PM

We need to all a line to #include <unistd.h>. This gets rid of the warning that a call to close() was

implicit.

Next we need to make some code changes.

 TO

Change the return type of main from void to int.

Initialize the variable err to 0.

28

Last Updated 9/1/2009 11:31:00 PM

At the end of function main, add a return of 0;

Now compile and verify that it works!

You should get a successful compile.

29

Last Updated 9/1/2009 11:31:00 PM

Creating a Test Program for the OmniFlash (OpenSSL Server)
We need to grab the server sample program and do the same steps above. We need to set it up to

compile for both Linux and ARM.

I won't show every screen shot this time as the steps are almost identical.

1.) Launch CodeBlocks

2.) Click Create a new project.

3.) Click Console application and Go.

4.) Click C style and click Next.

5.) Name the project. I chose the name simpleserver.

6.) Click Finish.

Getting a sample server source code file

Copy the file serv.cpp from the demos/ssl folder under the OpenSSL code we extracted to your

project folder.

30

Last Updated 9/1/2009 11:31:00 PM

Delete the main.c file and rename serv.cpp to serv.c

Right-click on main.c and remove it from the project.

Right-click on the project and select Add files...

31

Last Updated 9/1/2009 11:31:00 PM

Select the file we just copied to our project and click open.

Click the Select All button and click OK.

If you haven't already set up the cross compiler, check the settings for the ARM compiler.

32

Last Updated 9/1/2009 11:31:00 PM

The settings should look like this if using the 3.3 compiler.

33

Last Updated 9/1/2009 11:31:00 PM

Click on Project Properties... so we can set up an additional build target for the ARM processor.

Click on the Build targets tab, click the Release target and click Duplicate.

Give it a name and click OK.

34

Last Updated 9/1/2009 11:31:00 PM

Make sure the armRelease target is selected. Change the Output filename and Objects output dir so we

don't overwrite our regular ones when we build. After you have changed the directories, click the Build

options...

Change the compiler to the ARM GCC compiler.

Click OK to this window and OK to the other window to save the settings.

35

Last Updated 9/1/2009 11:31:00 PM

Click on Project -> Build options... to set up all the build dependencies.

Click on the Debug target. Click the Linker settings and then add the following Link libraries IN THIS

ORDER. The click the Copy all to... button.

36

Last Updated 9/1/2009 11:31:00 PM

Copy it to the Release target.

Also copy it to the armRelease target.

37

Last Updated 9/1/2009 11:31:00 PM

Select the Search directories tab for the Debug target. Click the Add button.

Add /usr/local/ssl/include to the list. Note: This is NOT the ARM version. This is the regular

Linux version.

38

Last Updated 9/1/2009 11:31:00 PM

Now click the Copy to all... button.

Click the Release target and click OK. Do NOT add this to the armRelease target. These are the wrong

includes for ARM.

39

Last Updated 9/1/2009 11:31:00 PM

Click the Linker tab under the Search directories on the Debug target.

Click the Add button and /usr/local/ssl/lib

Also add /usr/lib

40

Last Updated 9/1/2009 11:31:00 PM

Click the Copy all to... button and select the Release target and clock OK. Do NOT add these to the

armRelease target.

41

Last Updated 9/1/2009 11:31:00 PM

Now click the armRelease target. Click on the Search directories tab and then the Compiler tab. Click

Add .

Enter the path to the ARM ssl includes. Enter /usr/local/arm/ssl/include

42

Last Updated 9/1/2009 11:31:00 PM

Now click the Linker tab under the Search directories. Click Add.

Add /usr/local/arm/ssl/lib to the path. This is the path to the ARM SSL libraries. We will need this

path later when we transfer files to the OmniFlash. These libraries will have to be transferred too.

43

Last Updated 9/1/2009 11:31:00 PM

Add /lib to the list. This is the directory on the OmniFlash where shared libraries live.

Now click OK to save all the settings.

Code changes to make it compile

There are a couple code changes we need to make in order to get a clean compile.

 TO

Change the function main type from void to int.

44

Last Updated 9/1/2009 11:31:00 PM

Change TO

Type cast s_addr to an unsigned long.

 TO

Add a return 0 to the end of function main.

45

Last Updated 9/1/2009 11:31:00 PM

Now click the compile button. You should get a successful compile.

This program will run on our Ubuntu Linux box now. We could run this as a server and also run our

client we built earlier and we would have a working Client / Server set of programs.

Let's try compiling this for ARM next.

46

Last Updated 9/1/2009 11:31:00 PM

Change the Build target to armRelease and click the compile button. You should get a successful

compile.

Multithreaded support
 If you are going to make a threaded application, you need to add one more library to the list.

47

Last Updated 9/1/2009 11:31:00 PM

Add pthread to each target.

You must also #include <pthread.h> as the first include. By including it first, different options are

enabled in the standard runtime library includes.

Generating an SSL certificate and Key
Before we can test our program, we need to generate an SSL certificate and key. We also need to tell

our server program what the names of the keys are and where to find them.

48

Last Updated 9/1/2009 11:31:00 PM

Change the names of the CERTF and KEYF defines to the following:

TO

Now compile the program for ARM.

Open a terminal and type this command. Note: This goes all on one line. Change the fields to match

your specific needs.

openssl req -x509 -nodes -days 3650 -newkey rsa:2048 -keyout pkey.key -out cert.crt -subj

"/C=US/ST=State/L=City/O=CompanyName/OU=DeviceName-

OmniFlash/CN=www.yourdomain.com/emailAddress=root@localhost.com"

49

Last Updated 9/1/2009 11:31:00 PM

Once we call openssl, we end up with our certificate and key files. We need to copy these to the

OmniFlash along with our program.

Copying files to the OmniFlash
In order to test our program, we need to copy over a few files to the OmniFlash.

Note: For this test, we must write to /mnt/FlashMemory because of the size of all the files we have.

Start PuTTY and boot the system.

50

Last Updated 9/1/2009 11:31:00 PM

Once booted, cd into /mnt/FlashMemory

Now that we are in the right directory, close PuTTy so the serial port is available again.

Start the CuteCom application and click the Open Device button.

51

Last Updated 9/1/2009 11:31:00 PM

After the OmniFlash has booted, we need to send the program we just compiled. Make sure XModem

is selected. In the Input box, type rx simpleserver and press enter.. Then click the Send file...

button. Note: Once we have entered a command, we can double-click it from the list and it will be sent

for us.

52

Last Updated 9/1/2009 11:31:00 PM

Browse for the file we just compiled and click Open to send it.

Wait while the file is being sent.

53

Last Updated 9/1/2009 11:31:00 PM

Do the same for the following files...

cert.crt and pkey.key

Now we must send the OpenSSL libraries.

The SSL libraries are in the folder we built earlier.

Using CuteCom, send these two libraries also.

54

Last Updated 9/1/2009 11:31:00 PM

Once all the files have been sent, click the Close device button.

Now start PuTTY again.

55

Last Updated 9/1/2009 11:31:00 PM

If we list the contents of the folder, we can see all the files we just sent.

We need to make the program executable. Do this by changing the mode to executable with chmod

+x simpleserver . We follow that up with a sync to write the contents to the flash memory so that

if we crash the system and have to reboot that we don't corrupt the flash memory.

Testing our server and client programs
In order to test our programs, we need to configure the OmniFlash's IP address and start up the

ethernet device.

On our Ubuntu Linux device, we need to get our IP address.

We do this by bringing up a terminal and typing ifconfig -a eth0 (or eth1 for whatever interface we

have). Make note of the inet addr and the Mask. We need to set something similar on the OmniFlash.

56

Last Updated 9/1/2009 11:31:00 PM

Note: Make sure you have a network cable plugged into the OmniFlash.

In your PuTTY window, type the following commands.

ifconfig eth0 up Bring up the adapter.

ifconfig eth0 192.168.2.90 netmask 255.255.255.0 Set up your IP address.

ifconfig -a eth0 List the IP address.

57

Last Updated 9/1/2009 11:31:00 PM

Now from our Ubuntu Linux box, we need to verify we can talk to the OmniFlash.

Ping the IP address you gave to the OmniFlash and verify you get a response. <ctrl> C gets you out.

Let's start up the server on the OmniFlash and verify we can talk to it.

58

Last Updated 9/1/2009 11:31:00 PM

So far so good.

Let's bring up the client program. Save all your work in CodeBlocks and open up the simpleclient

program we built earlier.

Open the simpleclient we built earlier.

59

Last Updated 9/1/2009 11:31:00 PM

Change the default IP address to the IP address we gave the OmniFlash.

The IP address of the OmniFlash.

Compile the application again.

Now let's run it and see if they talk.

Click the Run button.

60

Last Updated 9/1/2009 11:31:00 PM

Here is the output of our Client program.

Here is the output of our Server program. And there you have it. OpenSSL running on an OmniFlash.

If you wanted to debug the server program and test it, launch a new instance of CodeBlocks and open

the Server project. (CodeBlocks needs a configuration change to allow more than one instance). Change

the IP address back to 127.0.0.1 (This means local device), change the target to Debug and then debug

it. When the kinks are worked out, recompile it for ARM and send it over to your OmniFlash and run it.

