
Development and Test of Sensor-
Aided Microcontroller Based

Irrigation System with Web Browser
Interface

Submitted to
Lance Fung

Dept of Electrical and
Computer Engineering

Curtin University
Perth, WA

October 25, 2002

By
Aaron Wills

Curtin University

ACKNOWLEDGEMENTS i

Acknowledgements

There are a few thanks that have to go out to some people who have helped me along

the way in order to produce this report.

I would like to thank Kevin most of all for his direction and guidance. The project

would have been a lot more difficult without his help.

Thanks also to Antonio at Micromax (and JKMicro) for generosity in sponsoring me

with a microcontroller and an I/O card which has been the heart of my system and

something I couldn’t have done without.

Thanks to my place of occupation, IT West, for help when I needed it and time off to

do my project.

Last but not least, thanks to my family and my beautiful girlfriend Emma, for

invaluable support throughout the last year.

Thank you!

CONTENTS ii

Contents

1.0 Introduction 1

2.0 Theories, Models and Hypothesis 4

3.0 Materials and Methods 7

3.1 Hardware Design 7

3.1.1 Microcontroller 7

3.1.2 Sensors 9

3.1.3 Relay Board Design 11

3.1.4 Pump and Valve Control 12

3.2 Software Design 14

3.2.1 Browser interface 14

3.2.2 Web server 14

3.2.3 File Transfer 15

3.2.4 Weather station data collection 15

3.2.5 Evaporation adjustment 16

3.2.6 Valve Control 18

3.3 Implementation and Testing 19

3.3.1 Test Bench Setup 19

3.3.2 On-Site Setup 21

4.0 Results and Discussion 25

5.0 Conclusion 29

CONTENTS iii

6.0 Recommendations 31

7.0 References and Bibliography 35

Appendices 38

Appendix A Microcontroller specifications 38

Appendix B Weather station specifications 41

Appendix C Weather station data protocol 43

Appendix D Web-based user interface 48

Appendix E Hargreaves / Samani Evapotranspiration Model 50

Appendix F Weather station data extraction routine 52

Appendix G Valve Control routine 67

List of Figures 69

1. Introduction 1

Chapter 1

Introduction

It is well known that Australia is a dry continent. This stereotype has been reinforced

in recent times with most of eastern Australia going without rain for the last 6 months

and fears the dry spell could go on for another six months. Water restrictions have

been in place in most places for several years now to try to limit water consumption.

Keeping these facts in mind, I decided to tackle part of the problem by trying to

improve the efficiency of water use in irrigation systems.

Common methods of water distribution can be enhanced or replaced by using recent

technological advances. I hope to use it to improve the efficiency of water

distribution, to automate the process of irrigation management, to provide an easy to

use programming and reporting interface, and to provide a scalable, versatile base

from which to expand or modify if needed.

One of the main drawbacks with the old fashioned auto timer system is that they do

not cater for changing environmental conditions. Temperature, wind, rainfall and

other elements can dramatically affect the amount of water needed to sustain a plants

health. If these elements were monitored and used to influence the watering cycles,

then the water used should be more effective.

Another aspect of regular irrigation systems that could be improved is its user

interface. Not only can they be difficult to program and setup, they often don’t have

the flexibility or scalability to do exactly what the user would like. With the

1. Introduction 2

phenomenal growth of the Internet in the last decade, the use of a web browser

interface has not only become the standard for viewing pages on the World Wide Web

but has become more pervasive as a means of collecting user input or providing the

output / status of control systems. In this situation the web interface provides an

excellent platform from which to develop the system. The portability of this

technology means that the system could be controlled from anywhere in the world (if

required).

Once the basic requirements of the project had been established (sensor driven, web

interface, high automation), the lengthy process of deciding what hardware to use and

what software should tie it all together was undertaken. This took a quite some time

as there were many alternatives on the market to choose from.

Eventually a microcontroller was chosen for the heart of the system. A PC based

solution could have been designed easier but a microcontroller based solution meant

that the system was more independent and hopefully more reliable, with cheaper

running costs. Versatility was also a requirement of the design and as the controller is

based on an Intel 386 processor running the DOS operating system, there is a wide

range of software that can be run on it. There are also plans in the future to add extra

components to the system to monitor security, control lighting etc.

Most of the sensors needed for the system could be have been cheaply produced using

discrete components in conjunction with an analogue to digital converter, but in this

case I used an all in one weather station which incorporated the following sensors:

indoor / outdoor temperature, air pressure, rainfall, wind chill, wind speed, wind

direction, indoor / outdoor humidity and indoor / outdoor dew point. Its serial port

output meant it was able to send data directly to the controller for processing.

There is some question about the suitability of the Evapotranspiration calculation

method (Hargreaves / Samani equation) used in this system. However, it was

recommended on certain internet sites as a reasonably accurate method of calculating

the Evapotranspiration which needed parameters that I could obtain with my sensor

hardware.

1. Introduction 3

Hopefully this project can show that automation in the area of irrigation can lead to

efficient use of water and human resources.

I am writing this project as a requirement for my final unit of study of a Computer

Technology degree, which required use of most of the knowledge acquired whilst at

Curtin University.

2. Theories, Models and Hypothesis 4

Chapter 2

Theories, Models and Hypothesis

My main hypothesis in regards to this project is that using sensor based technology to

automate irrigation can improve water usage efficiency. This is due to the fact that

the sensors could provide information about the environment to an irrigation

controller, and preset watering cycles could be adjusted to suit current weather

conditions.

 On rainy days, it would be expected of the system to detect the presence of rain and

shut down cycles if necessary. On hotter, dryer days, the system should detect the

high temperature and low humidity and subsequently increase the length of the next

cycle. The Hargreaves / Samani equation only uses a subset of all the environmental

elements gathered by the weather station, in calculation of evapotranspiration. This

means not all of the sensors used in this project will have an affect on the watering

cycle duration, but they may be used in the future if a more appropriate formulae for

predicting evapotranspiration is found. All of the sensors are to have their data logged

anyway, for reporting purposes, and for future examination.

Another feature of this system is to be its web browser user interface for gathering

station programs, station information and displaying station status. This needs to be

evaluated as an effective and advantageous method for user interaction. Ease of use,

versatility and accessibility are hoped to be key elements of this design.

2. Theories, Models and Hypothesis 5

There are several irrigation technologies currently in widespread use around the world

with some complimenting each other and some competing as the preferred

implementation. Examples include:

1) Wireless technology to eliminate cables between controllers and stations. This

adds the benefit of flexible sprinkler placement and saving of time and money

as there are no cables to run or maintain (especially for larger sites). However,

any money saved may be lost in the initial outlay for the wireless equipment.

2) The use of soil moisture sensors to provide feedback to the controllers. These

devices would have been preferred over the use of the weather station (or

perhaps in conjunction with it) in my project as this one sensor would be

enough on its own to indicate to the controller what level of irrigation would

be needed to compensate for the weather. This would greatly simplify the

routines to dynamically adjust the cycles and could eliminate the need for an

evapotranspiration equation. Again, a drawback is the fact that these devices

are not cheap and that is why at this point in time I have chosen to use the

weather station.

3) The most popular by far, is the regular 4 or 6 zone irrigation controller. These

are relatively cheap, until you get to models with 8 or more zones. Overall

they are quite inflexible, and quite often they can’t do what the user would

like. As well as this, they are ‘static’ devices without the ability to adjust to

environmental conditions without user intervention.

In this project I hope to find the most suitable pieces of hardware and software to

achieve the desired results of irrigation automation mentioned earlier. As I am on a

budget, it isn’t possible to purchase the more expensive parts that may be better suited

for the task, and as such I’ve had to compromise on some parts. This means though,

that if it can still be achieved successfully and relatively inexpensively, then it can

have applications in more areas.

As far as I know there has not been any other studies into how effective, usage of

sensor technology incorporated in an irrigation system, could be in delivering the least

amount of water needed to sustain healthy plant or vegetative growth so I can’t

challenge or support the work of any others. There have been several studies into

which evapotranspiration model is the best one to use, but no consensus as to which

2. Theories, Models and Hypothesis 6

one to use. The Hargreaves / Samani equation will be monitored for its effectiveness

in this situation. As it makes some generalizations about the vegetation it may need to

be adjusted to be accurate. Also it only uses the minimum and maximum daily

temperature readings, and the location’s latitude value to determine the current

evapotranspiration. The state of the vegetation after several months may be the best

indication of the suitability of using this formula.

3. Materials and Methods 7

Chapter 3

Materials and Methods

3.1 Hardware design

3.1.1 Microcontroller

The first step in the hardware design was to find some sources of equipment that I

might need to complete the project. This was also an opportunity for me to see if

there were any similar designs to the one that I proposed to build. If any products or

devices of interest were found the manufacturer was contacted to obtain more

information and the relevant costs involved.

It was known found from initial groundwork that a microcontroller based system was

a desirable option. The main criteria in deciding on what to use were (in no particular

order) size, performance, features and price. Initially I had considered using a serial

interface in between the microcontroller and a PC for uploading of programs and

retrieving data logged on the controller for reporting purposes. The PC was to

perform all of the user input as well as gathering, processing and displaying the data.

As well as performing these tasks locally, it should also be able to via a web page, to

enable remote access of the system.

Tiger and Tiny Tiger computer modules were found to be of interest. They are

computer modules that run BASIC (compiled on a PC and downloaded via an RS232

cable), and are about the size of a matchbox. They contained 2 serial ports, 10 bit

analogue inputs, direct LCD connection, flash memory and battery backup.

3. Materials and Methods 8

I decided to try a different approach when I found microcontrollers at a couple of sites

with embedded network chipsets including a RJ45 Ethernet network port. Some

models were available as core modules to enable the user to design their own board,

with the module at the heart of the system providing the processor and other main

components. This approach could cut down the development time of a custom project

by providing a base from which to develop. The Rabbit 2000 microcontroller core

modules were available on a TCP/IP development board with flash RAM, Ethernet

hardware, serial ports and digital I/O. The programs are created, compiled, and

executed in Dynamic C and full TCP/IP source code was provided in the kit..

This seemed to fit better with my overall design as it simplified the exchange and

management of data between the user and the system. It added a degree of robustness

to the system as the controller could operate more independently. Being able to use

the TCP/IP protocol meant the controller would be highly accessible and it should be

relatively easy to set up communications with other devices. One drawback though

was price, as most development kits were around the $650 price mark.

I was fortunate enough to receive a sponsor in Micromax; an eastern state based

Electronics Company, who I had contacted previously via email to register some

interest in some of their products. They supplied me with a full µFlashTCP

development kit which had all the capabilities I was looking for. The µFlashTCP

single board computer is based on the Intel 386Ex microcomputer which is software

compatible with the Intel 80386 family of microprocessors. Onboard Ethernet

provided a direct connection to 10BaseT networks. DOS compatibility allowed

development in a familiar environment with a wide range of tools available. High

endurance flash memory is used on the board in conjunction with onboard non-

volatile memory. Applications are uploaded directly onto the flash disk. The kit also

came with a simple web server program which could be modified to suit specific

applications. See the appendix for more specification detail.

3. Materials and Methods 9

3.1.2 Sensors

After the processor had been chosen, the next decision to be made was what would be

needed to sufficiently model the weather to allow for compensation of its effects. A

number of ideas were considered, which included –

• Measuring the soil resistance to obtain a soil moisture level reading. As the

moisture level decreases the resistance should increase. They could be placed

at different depths to give a better overall indication of soil conditions.

• Using a 3 pin temperature sensor unit (possibly an NS ICLM35) to convert the

current temperature to an appropriate voltage level. The three pins are ground,

5 volts and signal (1 – 4V). The signal would be sent to an ADC (Analogue to

Digital Converter) which would send its output to the microcontrollers input

port.

• Using a tipping bucket method of rainfall level reading. This involves having

a small container on one side of a balance and a counterweight on the other

side. The counterweight, in its starting position, would interrupt light between

the two parts of an optocoupler (the emitter and the receiver). When it rained,

the container would fill up, and at a certain point (most likely to be calibrated

to be when 1 mm of rain had fallen) the container would reach its lowest point

and the counterweight would reach its highest point, allowing light to pass

through the optocoupler. Just after this, the container would tip over and

empty its contents. The output of the optocoupler would be received by the

microcontroller which would increment a rain counter on every transition of

signal state.

• Using a 3 pin humidity sensor component (possibly a HIH3605A) to convert

current humidity to an appropriate voltage level. The three pins are ground, 5

volts and signal (1 – 4V). The signal would be sent to an ADC (Analogue to

Digital Converter) which would send its output to the microcontrollers input

port.

• An alternative to using a more expensive humidity sensor could be to use two

temperature sensors instead. Using the web bulb / dry bulb method to measure

humidity, one sensor is wrapped in damp cotton or other material and one

sensor is operated normally. The two temperature readings obtained are used

with the web bulb / dry bulb equation to calculate the humidity.

3. Materials and Methods 10

• Evaporation could possibly be measured by filling a tube with water that had a

level sensor inside it. As the water in the tube evaporated the water level

would drop and at a certain point a switch could be triggered to send a signal

to the microcontroller. This would let the controller know that enough

evaporation has taken place for the system to need another cycle of irrigation.

• The wind speed could be measured if with an anemometer. Construction

would involve using ping pong balls cut in half to catch the wind, attached to

the top of a mast which would spin around. The mast would have a disc

attached to it with holes in it around it lower down the mast. The two parts of

an optocoupler would be attached on either side of the disc, registering a

signal every time light was able to pass through one of the holes on the disc.

The more holes the disc had in it, the more updates of wind speed would be

possible. The time interval between signal pulses could be used to determine

the wind speed.

Resources were again checked, targeting all major sensor manufacturers and irrigation

suppliers to see if anything was available of the shelf. One requirement was the

ability to be able to interface into a digital environment. After much research, most of

the sensors found on the market weren’t exactly suitable, being either the heavy duty

industrial type which were too expensive to remain feasible, or simple sensors usually

with an LCD display inbuilt, but no means of accessing any data signals from the

device.

It was decided to design and build my own sensors using discrete components, and

interface them into the microcontroller using an analogue to digital converter. This

way, hopefully, I could produce all the sensors I needed relatively cheaply. That was

the plan, until I managed to source a better alternative in an Oregon Scientific WM-

918 weather station.

This instrument comes completely equipped with all necessary wiring and

accessories: self-dumping electronic rain gauge, outdoor temperature/humidity sensor,

and an anemometer/aerovane to measure wind speed and direction. Monitoring

devices are wired to a compact desktop control panel that displays digital

clock/calendar/alarm plus all weather readings (barometric pressure, dew point, wind

speed and direction, temperature, wind chill, and rainfall). This is also the only one

3. Materials and Methods 11

with a 12-24 hour forecast system. The station operates on 8 AAA batteries or from a

house current using an AC power adapter.

3.1.3 Relay Board Design

Relay output to the solenoid valves was selected over other alternatives (e.g. TRIAC)

as providing the best isolation from possible transients induced in the solenoid wiring

from lightning.

Power is obtained by rectifying the 24 volts AC required for the reticulation solenoid

valves.

A LM317 was used as a regulator to provide the 12 volts for the relays – this was later

modified to 13.8 volts to enable it to charge a standby 12 volt lead acid dry battery for

mains failure power to the micro-controller. The output of this supply, besides

powering the relays, is passed on to a 5 volt switch-mode supply used to power the

micro-controller.

As double pole relays were used a saving of components was available by utilising

each pole for a separate valve. Thus only 9 relays replaced the 16 that should have

been required to control the reticulation 16 stations.

A led was included in each relay circuit for the prototype to enable ease of program

testing during development. All relay coils have diodes across them to prevent back

em spikes damaging other components. Capacitors were placed across the contacts to

minimise contact wear from sparking.

See the following pages for an annotated photo and circuit diagram of the relay board.

3. Materials and Methods 12

Figure 3.1 – Photo of Relay board

1. Common
2. Valve output
3. Relays
4. LED - valve status
5. Voltage regulator
6. 12 V DC input
7. 24 V AC input
8. Microcontroller interface
9. Override switch
10. LED – power status
11. Fuse

Relay Board

3. Materials and Methods 13

D1

C1 C2
D2

Q1

RLY1

R1

Valve 1

Port D1

Valve 2

+12V

D19

D22

SW1b

SW1a F1 D21

R11

R13R12

C19

C23C21C20

C22

D20

Q1

RLY10

R10

Pump

Common

Port C2

+12V

D17

D18

D23

Q9

RLY9

R9
Port D0

+12V

+12V
1.2AH

+12V
(13.8V nominal)

+
+

++

+

B

A

A

A

24 VAC
B

D3

C3 C4
D4

Q2

RLY2

R2

Valve 3

Odd

Port D2

Valve 4

Even

+12V

D5

C5 C6
D6

Q3

RLY3

R3

Valve 5

Port D3

Valve 6

+12V

D7

C7 C8
D8

Q4

RLY4

R4

Valve 7

Port D4

Valve 8

+12V

D9

C9 C10
D10

Q5

RLY5

R5

Valve 9

Port D5

Valve 10

+12V

D11

C11 C12
D12

Q6

RLY6

R6

Valve 11

Port D6

Valve 12

+12V

D13

C13 C14
D14

Q7

RLY7

R7

Valve 13

Port D7

Valve 14

+12V

D15

C15 C16
D16

Q8

RLY8

R8

Valve 15

Port C0

Valve 16

+12V

Components:

R1-R10 3.9k
R11 220 ohm
R12 2.2k
R13 1k
C1-C19 0.01uF
C20 100uF 64V
C21,22 1uF 16V, Tantalum
C23 10uF 16V, Tantalum
Q1-Q10 BC548
BR1 Bridge Rectifier
IC1 LM317
D1,3,5,7,9,11,13,15,17,19,21,22 1N4001
D2,4,6,8,10,12,14,16,18,20 LED (red)
D23 LED (green)
RLY1-10 12V DPDT Relay
SW1 DPST Switch
F1 1 amp fuse

Reticulation Controller Relay Board

IC1BR1 +-

Figure 3.2 – Relay Board Schematic

3. Materials and Methods 14

3.2 Software Design

3.2.1 Browser interface

Before I could design the web interface for user input I needed to work out which

controls would need to be accessible from the web page/s. It was decided that the

following basic functions would be needed –

• Access to station data

• Ability to view and set cycles for each stations

• Ability to add or delete stations

• Ability to control level of automation for each cycle

• Access to weather data

These requirements were then used to form the web pages, sourced in html code,

using a web page design program. They include –

• An index or home page from which there are hyperlinks to all other pages

• A station setup page where the user can enter information about a new station

• A cycle programming page for entry of each station’s cycle parameters with

a checkbox to enable or disable the Evapotranspiration adjustment routine.

• A current weather data web page.

Snapshots of these pages are contained in Appendix D – Web-based User Interface.

3.2.2 Web server

WebTCP is an embedded web server utility written in C++ that was included in the

µFlashTCP software package. The standard program has been slightly modified to

use CGI scripts for collecting user input. Because it is a DOS compatible program, it

can run on the microcontroller (which runs in a DOS v3.3 compatible environment),

turning it into a miniature web server. It is an executable program that is set to run in

the startup batch file contained in the controller, so shortly after power is applied the

web server is up and running.

3. Materials and Methods 15

3.2.3 File Transfer

Initial communications and uploading of programs into the controller was performed

using a program called HyperTerminal which is shipped with Windows and is part of

the default install. A serial cable was used to connect the controller’s console port to

the PC’s serial port 1 or COM1. HyperTerminal was configured to connect “Direct to

Com1” at 9600 bits per second, with 8 data bits, no parity bits, 1 stop bit, and no flow

control. As soon as power is applied to the controller it should respond with a

welcome message, and it is ready to begin developing applications.

To transfer a file to the controller the command UP was used with the following

syntax:

UP filename

A line of 'C' characters will begin to appear, polling the terminal for the start of an

Xmodem transfer. The file transfer is then started by selecting Transfer / Send. The

'Send File' window appears and you can then enter the required file. The Xmodem

Protocol must be selected. A progress meter is then displayed showing the file

transfer taking place. When the transfer has finished the DOS prompt will appear and

the program or files can be run or viewed.

3.2.4 Weather station data collection

Extracting data from the weather station meant first discovering the protocol of its

output data. Questions such as; how many bytes represented each sensor’s value,

what speed was the data transmitted at, do I use interrupts or not to alert the controller

of data waiting from the weather station, - all needed to be answered before any

programming could be started. The weather station’s data protocol was found on the

internet and has the following general specifications:

Group
Number

Length
(Bytes)

Report
Interval

Contents
Summary

8F 35 10 Sec Time, Humidity

9F 34 10 Sec Temperature

AF 31 10 Sec Barometer, Dew Point

BF 14 10 Sec Rain

CF 27 5 Sec Wind, Wind Chill,

General

Figure 3.3 – Weather station data protocol table

3. Materials and Methods 16

The full output data protocol from the weather station is listed in Appendix C. It

shows what every byte represents and what data types all the variables are. I also

managed to come across the baud rate, parity, etc for interfacing with the weather

station. From this I wrote a program in c++ listed in Appendix F, to capture the data

from the serial output of the weather station as it came in every 5 seconds. It then

processes the stream of data using checksums for data validity. The data is broken up

according to the protocol listing. The variables are then all copied to a log file on the

microcontroller’s drive for use by the other programs in the system and for reporting

purposes.

There were some problems initially in receiving data from the WM 918, in that the

whole data stream wasn’t being received, so the checksums weren’t allowing the main

part of the program to run. However, when the data stream input routine was

modified and fixed the whole stream was received without being truncated and the

rest of the program could run.

3.2.5 Evaporation adjustment

Figure 3.4 – Evapotranspiration definition

It was decided to use the Samani / Hargreaves method of evapotranspiration

calculation due to its simplicity and minimum setup time and requirements. All it

requires for inputs are minimum and maximum temperatures and the latitude of the

3. Materials and Methods 17

site. Another common method of calculating the evapotranspiration was the Penman

Equation. This has found to be more accurate than the Samani / Hargreaves method

over shorter periods but does require the measurement of solar radiation, an input not

measurable with the current hardware. The actual function was written in c++ to

accept the variable inputs and return the evaporation amount in millimeters to the

main program.

Some theory behind the Samani / Hargreaves model and equation is given in

Appendix E.

The function used to calculate evaporation is also listed in Appendix E.

The outline of the process which helped to calculate water requirement is shown on

the following page.

3. Materials and Methods 18

Figure 3.5 – Crop Water Requirement Determination Process

3.2.6 Valve Control

Listed in Appendix G are a few functions written in c++ by Kevin Taylor to control

the irrigation valves. There is the function ValveOn which turns on the required valve

1-16. Function ValvesOff is called during initialization, and at the completion of a

reticulation cycle - i.e. after all required valves have been operated. Function

InitialisePort is called to initialize port directions and clear valves.

3. Materials and Methods 19

3.3 Implementation and Testing

3.3.1 Test Bench Setup

Most of the major components of the system were set up on a bench to establish that

the various components were functioning as they should. The photo pictured below

shows most of the parts during a test, without the relay board connected.

The controller has power applied (onto pins marked J8) to it from a transformer that

plugs into the mains, which steps down to 5V after passing through another

transformer / regulator box.

One thing not to do when powering on the microcontroller, is to reconnect to main

transformer to the secondary transformer / regulator box when the main transformer is

already turned on and plugged into the microcontroller. This procedure ruined my

first transformer / regulator box so another unit had to be attained.

Figure 3.6 – Test Bench Setup Photo

3. Materials and Methods 20

A CAT 5 network cable is used to connect the controller to the network and test web

page functionality. An RJ 45 adaptor is connected to the Ethernet pins on the

controller allowing a normal network cable to be used. If you have a “crossover”

cable (a CAT5 cable, usually red in colour, with the receive/transmit wires reversed)

the other end of the cable can be plugged into another PC’s network card for direct

communication with the controller. Otherwise a hub or switch is needed, with the

controller and the pc connecting to the hub.

A 9 pin serial cable should be attached from the console port or COM2 on the

controller to a serial port of the pc to enable initial communications, file transfer and

for troubleshooting purposes. A similar cable was used to interface the weather

station to the COM1 port of the controller. This is the data cable that transfers all of

the climactic data.

The sensors don’t connect directly to the weather station main console. The sensor

cables converge at a junction box, which integrates them into one larger, flatter cable

which then clips into the weather station. The sensors are provided with a cable

attached resembling a telephone line, having an RJ 11 adaptor on the end.

Once HyperTerminal is configured correctly and power is applied, communication

with the controller is possible. A display message from controller should scroll

through, ending up at a command prompt. From here, the onboard network interface

is configured assigning an IP address, net mask and gateway with the TCP/IP

configuration utility provided.

The customized version of the web server, WebTCP, was uploaded to the controller,

as well as the html pages that form the user interface, the weather station data

processing routine, the valve control routine and the Evapotranspiration adjustment

routine.

The system was run for a few weeks on the test bench, making sure that the sensor

measurements were roughly calibrated, log files were being created and the web

server was still running.

3. Materials and Methods 21

3.3.2 On-Site Setup

Once satisfied the system was properly functioning, everything was moved to the

primary test site, located at a residence in Kalamunda, Western Australia. The site

had 14 stations covering approximately 1000 m2 of irrigated land. The total water

usage is 9500 litres for 10 minutes at maximum capacity.

Figure 3.7 – On-site sensor placement.

Figure 3.8 – Temperature / Humidity Sensor Placement.

As seen above, the rainfall sensor

was securely fixed on top of the air

conditioning unit, so it would be up

high and out of the way of any

debris that could fall into the unit.

The anemometer / aerovane sensor

unit was fixed to the existing

television antennae pole. The

temperature / humidity sensor

(shown on the next page) was

mounted underneath the back

verandah of the residence, ensuring

it would be not be in sunlight but

would be as ‘outside’ as possible.

This sensor should be in a shaded

spot so direct sunlight doesn't warm

3. Materials and Methods 22

up the sensor giving misleading readings for the temperature.

Avoiding running the wires to the out side sensor near any electrical lines or wires

that contain AC voltages was advised. The LCD weather station console, the

microcontroller and the relay boards were all placed in an undercover area at the rear

of the house. The connector board, where the sensor cables meet, has to be indoors or

inside a weather proof casing to avoid deterioration. When the weatherproof housings

can be made, these parts would be placed outside as well.

Once all the cables were connected (shown as a guide on page 24) and power was

applied, the weather station console needed to be reconfigured as their were no

batteries installed for backup power at this time, so the time, date and unit types

(Celsius or Fahrenheit etc.) were entered and set. The controller also started up,

automatically executing the web server program. The Ethernet cable from the

controller was plugged into a 10/100 Mb/s network switch inside the house which also

had a couple of PC’s linked to it. As the PC’s were on the same TCP/IP subnet as the

controller, they were able to browse to the web interface home page located at

http://192.168.0.1/index.htm (on the controller, the file “b:\www\index.htm”).

The station details were set up with the following parameters after clicking on the

home page link to Setup New Station located at http://192.168.0.1/setupstn.htm (on

the controller, the file “b:\www\setupstn.htm”):

Station

No.
Location description

Water Usage

(litres/min)

Location

type

1 Front lawn 1 72 outdoor

2 Front lawn 2 72 outdoor

3 Front rose garden 1 72 outdoor

4 Front rose garden 2 72 outdoor

5 Front central garden 72 outdoor

6 Front garden by fence 72 outdoor

7 Rear lawn 1 72 outdoor

8 Rear lawn 2 72 outdoor

9 Rear lawn 3 72 outdoor

10 Rear lawn 4 72 outdoor

11 Rear lawn 5 72 outdoor

12 Rear fruit tree 1 72 outdoor

3. Materials and Methods 23

13 Rear fruit tree 2 72 outdoor

14 Rear rose garden 72 outdoor

Figure 3.9 – Station Details Table

After these were setup, the station cycles had to be entered via the link to Station

Programming which is located at http://192.168.0.1/stnprog.htm (on the controller, the

file “b:\www\stnprog.htm”). The details entered were; what station number the cycle

applied to, whether the cycle was to run every constant number of days or certain days

of the week, start time and duration, and whether the cycle was to be of automatic

type or manual. Automatic mode means that sensor compensation will take place and

the duration entered can be modified by the program. Manual mode means that

whatever is entered by the user is applied no matter what the weather station readings.

Stations “Rear Lawn 1” and “Rear Lawn 2” were set on automatic and the rest of the

stations were set to run on manual mode to check the functionality of the adjustment

routine. Unfortunately there are no indoor or undercover stations, so the part of the

program that adjusts the duration differently for these types of stations can’t be tested

long term. For example, an undercover (but outdoor) station will be affect by all of

the same elements as an outdoor station except it wouldn’t receive any rain. The

program would check the station type, and if undercover it would know not to subtract

any rainfall received from the net irrigation requirement of this station.

Initially, test cycles were run to check that the programmed valve was opening at the

programmed time, and more importantly that it was shutting off the valve as well.

Tests were also done to make sure the manual shutdown switch located on the relay

board was functioning. Other tests included simulating rain to make sure the rainfall

sensor was functioning and making an impact on any cycles that were set to run with

the automatic setting.

The View Weather Data webpage which is located at http://192.168.0.1/wthdata.htm

(on the controller, the file “b:\www\wthdata.htm”) was tested to make sure the latest

weather data was viewable via a web browser from a PC on the network.

The system was left in place in normal operating conditions for one month over the

period August 1 to August 31 with the system functioning and logging data.

3. Materials and Methods 24

Figure 3.10 – Basic System Connectivity

4. Results and Discussion 25

Chapter 4

Results and Discussion

The graph and table below shows a portion of the climatic data logged for the time

period August 1 to August 31 by the controller. The data is stored in a text file called

log.txt located in the folder location “b:\www\” on the controller.

August 2002 Weather Log Graph

0

5

10

15

20

25

30

1/
08

/2
00

2

3/
08

/2
00

2

5/
08

/2
00

2

7/
08

/2
00

2

9/
08

/2
00

2

11
/0

8/
20

02

13
/0

8/
20

02

15
/0

8/
20

02

17
/0

8/
20

02

19
/0

8/
20

02

21
/0

8/
20

02

23
/0

8/
20

02

25
/0

8/
20

02

27
/0

8/
20

02

29
/0

8/
20

02

31
/0

8/
20

02

Date

Rainfall (mm)

Max Temp, C

Min Temp, C

Figure 4.1 – August Weather Log Graphed

4. Results and Discussion 26

AUGUST, 2002

Day MAX (°C) MIN (°C) RAIN (mm) Day MAX (°C) MIN (°C) RAIN(mm)

 1 19.7 13.5 2 17 19.6 9.6 0

 2 20.2 12.1 0 18 21.3 9.9 0

 3 19.2 13.0 2 19 21.0 8.6 0

 4 18.3 11.2 11 20 21.7 9.1 0

 5 19.2 11.2 2 21 22.1 10.9 0

 6 21.0 12.4 0 22 20.1 9.3 0

 7 22.2 12.1 0 23 20.4 8.1 0

 8 21.7 11.5 1 24 24.6 9.2 5

 9 20.7 12.5 11 25 21.3 14.2 1

10 17.8 9.2 2 26 20.9 12.8 10

11 19.1 7.6 0 27 19.8 8.7 0

12 18.1 7.0 0 28 20.3 9.7 0

13 18.9 6.8 0 29 20.3 10.6 10

14 20.2 7.5 10 30 20.7 11.1 12

15 18.3 9.8 2 31 21.0 13.0 10

16 19.0 8.1 0

Figure 4.2 – August Weather Log Data Table

The following graph and table show the evapotranspiration calculated from the

maximum and minimum temperatures and date, the rainfall recorded for each day,

and the amount of water in mm that is needed to counteract the evaporative effect.

4. Results and Discussion 27

August 2002 Evaporation / Adjustment Graph

-10

-5

0

5

10

15

1/
08

3/
08

5/
08

7/
08

9/
08

11
/0

8
13

/0
8

15
/0

8
17

/0
8

19
/0

8
21

/0
8

23
/0

8
25

/0
8

27
/0

8
29

/0
8

31
/0

8

Date

Rainfall (mm)

Evap (mm)

Adjust. (mm)

Figure 4.3 – August Evapotranspiration/ Adjustment Graph

AUGUST, 2002

Day Evapotranspiration (mm) Rainfall (mm) Adjustment (mm)

1 3.2 2 1.2

2 3.7 0 3.7

3 3.2 2 1.2

4 3.3 11 -7.7

5 3.6 2 1.6

6 3.9 0 3.9

7 4.3 0 4.3

8 4.2 1 3.2

9 3.8 11 -7.2

10 3.5 2 1.5

11 4.1 0 4.1

12 3.9 0 3.9

13 4.1 0 4.1

14 4.4 10 -5.6

15 3.6 2 1.6

16 4.0 0 4.0

4. Results and Discussion 28

17 4.0 0 4.0

18 4.4 0 4.4

19 4.5 0 4.5

20 4.6 0 4.6

21 4.5 0 4.5

22 4.2 0 4.2

23 4.4 0 4.4

24 5.3 5 0.3

25 3.7 1 2.7

26 3.9 10 -6.1

27 4.2 0 4.2

28 4.2 0 4.2

29 4.1 10 -5.9

30 4.1 12 -7.9

31 3.9 10 -6.1

Total 122.5 91 31.5

Figure 4.4 – August Evapotranspiration/ Adjustment Graph Data Table

Every millimeter of water needed by the land equates to an extra 1 minute and 10

seconds of sprinkler time. This figure was achieved using the following method (as

the method I found used imperial measurements, I converted the inputs to imperial

and the results to metric):

• Find the approximate area covered by each zone in square feet.

• Calculate the gallons per minute (gpm) used by each zone.

• Use the following formula PR (in/hr) = (96.3 x gpm) / Area (ft2)

where PR stands for Precipitation Rate of the sprinklers in a station.

• Convert the PR in inches per hour to mm/min by multiplying by 0.423.

• Take the inverse of this result to obtain the number of minutes to deliver 1

millimetre of water to the zone.

The total area irrigated was known to be 1000 m2, which divided amongst 14 stations

this gives 71.42 m2 of land per station. This converts to be 768 ft2 of land per station.

It was already known that each station could pump 72 litres per minute which

converted to 16 gpm. This means the PR = 96.3 x 16 / 768 = 2.01 in/hr per station.

4. Results and Discussion 29

This converts to be 50.96 mm/hr or 0.85 mm/min. The inverse of this is 1.18 minutes

which is 1 minute and 10 seconds to deliver 1mm.

The average adjustment needed for the August period per day was 3.7 mm which

equates to 4 min 22 seconds time the valves would be open for. Taking a cumulative

approach, all the adjustment time is added up until the next scheduled cycle. At this

point all the cumulative time is used (up to a maximum period). If running the cycles

every 3 days then the average duration of each cycle needed to counter

evapotranspiration was be 13 minutes and 6 seconds. The first graph on the following

page shows the duration and water usage of each cycle using the cumulative method

running every 3 days. The second graph shows the duration and water usage of each

cycle using the manual mode.

August 2002 Cycle Durations for Rear Lawn 1 (auto)

0

200

400

600

800

1000

1200

1/
08

4/
08

7/
08

10
/0

8
13

/0
8

16
/0

8
19

/0
8

22
/0

8
25

/0
8

28
/0

8
31

/0
8

Date

L
it

re
s

0

5

10

15

20

25

M
in

u
te

s

Water Usage (litres)

Cycle Duration (min)

Figure 4.4 – August Cycle Durations for Rear Lawn 1

Note that automatic cycles that run for less than 2 minutes wouldn’t be run due to the

high overheads in starting up the system. The total amount of water used by the

automatic station over the month was calculated to be 4376 litres. This compares to

the manual station which was calculated to have used 7200 litres over the same

period. This is about 65% more than the automatic station with an extra 2824 litres in

one month.

4. Results and Discussion 30

August 2002 Cycle Durations for Rear Lawn 4 (manual)

0

200

400

600

800

1000

1200

1/
08

4/
08

7/
08

10
/0

8
13

/0
8

16
/0

8
19

/0
8

22
/0

8
25

/0
8

28
/0

8
31

/0
8

Date

L
it

re
s

0

5

10

15

20

25

M
in

u
te

s

Water Usage (litres)

Cycle Duration (min)

Figure 4.5 – August Cycle Durations for Rear Lawn 4

These results show that using the same programmed cycle times for two different

stations can result in differing actual run times if one is running on automatic and the

other on manual mode. It is also noticeable, on the auto station, that the cycle

duration was shorter when rainfall was received in the 3 day period before the

programmed cycle time. The actual cycle duration was slightly longer when the days

leading up to the programmed cycle time were hotter. As expected the manual station

had consistent run times which weather conditions did not affect. A bit more time

would be needed to make sure the adjustments made by the algorithm are appropriate

whilst maintaining vegetation health.

The browser interface was tested from a remote site by dialing into a computer on the

same network subnet as the microcontroller. This host PC acted as a DHCP server

giving the remote PC an IP address on the local network, and from that point the

communication with the controller proceeded to behave as if connected directly to the

network.

To simplify the cycle adjustment process, it would probably be more beneficial to use

a soil moisture sensor instead of all the other climatic sensors. This way only one

measurement would be needed and it would provide a more direct method of

assessing the vegetation’s water requirements. These devices, however, are not cheap

at this stage so they were ruled out in the feasibility study.

5. Conclusion 30

Chapter 5

Conclusion

What I managed to discover in the process of design and implementation of my

project is that by combining the technologies of automation in the area of reticulation

and weather sensing equipment, more efficient water delivery can be made possible.

This can be achieved while maintaining simplicity, ease of use and ease of

implementation. The use of a browser interface meant it was relatively easy to work

with from both the user point of view and the programmer’s point of view. The initial

cycle setup time is significantly less than the first attempt at setting up a cycle on most

manual irrigation controllers. The lack of a hardware interface means that it isn’t an

expensive part that can be damaged and need replacing (although you will need a

computer to modify details).

I found that the programmed and actual cycle times differed when a station was setup

to make use of sensor based cycle time adjustments. Although I only had one month

to gather results to be studied which isn’t really enough time to make a definitive

judgment, I could see that water saving of about 65% was possible for the month of

August if using an automatically compensating system. This could have a significant

effect on water consumption habits if results continued to show these sorts of

differences. No visual indication of differences in vegetation health could be seen

between the automatic station zone and the manual station zone as the testing time

period was too short. The system has not yet been tested over the more extreme

months which could provide problems not yet encountered, such as lightning or heat

interference.

5. Conclusion 31

I believe this form of automation could be applied in a home environment well, due to

its ability to have other applications developed for it such as home security and home

lighting. The microcontroller has been reasonably easy to get up and developing as

well as being very flexible. Occasionally the microcontroller would need resetting,

which meant disconnecting the power source and reapplying it seconds later. This

could have been caused by power supply fluctuations, faulty components, moisture in

the controller or an undiscovered fault.

I found it a bit disappointing that soil moisture sensors were priced out of reach as

they could have simplified the process of estimating water requirements for the

vegetation. However, the weather station used in its place proved to be very reliable

and multifunctional with applications not only in irrigation but perhaps other areas as

well such as providing weather station data accessible to others on the internet. Some

more evapotranspiration equations / algorithms may need to be assessed for better

suitability if the cycle time adjustments seem to be having a detrimental effect on the

vegetation.

Generally I feel the project was a success, with the system performing most of the

functions that I wanted as I had expected. More time will obviously allow more

information to be collected, with further refinements and improvements being

inevitable.

6. Recommendations 32

Chapter 6

Recommendations

I would only recommend this model of irrigation control for medium to large areas of

land (1000 m2 or more) with a number of zones more than 6 - 8. This is due to the

price and time involved in setup of the system. The system hasn’t been tested with

more than 14 stations, but with a bit more development in the pump control / cycle

scheduling areas it seems the application will become more feasible as the number of

stations increases. At the moment there is a 16 station limit but this could be

increased by adding another relay board or making a new one with perhaps 32 relays

and/or relays with different voltage levels for applications in other areas.

At the moment the web interface needs more refinement with more user controls.

Functions that need work are:

• Pump control needs to be included on the web interface.

• Scheduling of cycles needs more development with more sophisticated user

entry options available such as a calendar type graphical input.

• Ability to represent the site graphical showing zone boundaries, sensor

locations and sprinkler locations.

• Each station’s own web page including the ability to view station status and

view information such as total hours in use and more.

The currently used evapotranspiration compensation needs qualification over a longer

period to assess its suitability for our climate and circumstances. If it proves to be not

suitable, then a number of other methods of estimating evapotranspiration, using a

variety of inputs, are available. The Penman – Monteith method (Monteith 1981)

6. Recommendations 33

computes reference evapotranspiration from net radiation at the crop surface, soil heat

flux, air temperature, wind speed and saturation vapour pressure deficit and although

is much more complicated, it could prove to be more accurate than the Samani –

Hargreaves method. This would probably be the next algorithm tried.

The soil moisture sensor needs to be evaluated as a replacement for the other sensors

in the future when the price and availability factor is a bit better. This could simplify

the system and lessen the risk of hardware failure due to the system having fewer

physical components. Weather proof casings are still needed to enclose the

microcontroller, weather station console, relay board and sensor junction box.

As mentioned earlier the core of the system – the µFlashTCP – is very flexible, and

extra modules or applications are still to be developed for the base system. A burglar

alarm / home security system with internet access should be attainable, perhaps with

the ability to send an email or SMS when the alarm has been activated. Lighting,

clothes lines, windows, window shutters and roller doors could all potentially be

controlled and monitored via the web interface with a bit more development. With

the recent introduction of the new Mini – ITX motherboard standard, it would now be

considerably easier and cheaper to obtain a small, powerful platform from which to

develop a similar system.

Testing is currently underway to integrate wireless technology into the system, with a

22 Mb/s 2.4 GHz Wireless Access Point running in wireless client mode that is

connected directly to the microcontroller instead of connecting to a switch or another

PC. Once operational this will allow the controller unit to be placed up to 130 meters

from the receiver with the standard antennae. This would be more advantageous in

larger sites where a large cable run may have been necessary.

Another technology of interest that could enhance the system is the use of electronic

sprinkler solenoids that can have individually assigned ID numbers. Packets of data

could run through the sprinkler data network having the sprinklers ID number in its

header, which is similar to the TCP/IP protocol when applied to computers. This

would mean individual sprinkler heads could be controlled providing the ultimate

flexibility in cycle control.

7. References and Bibliography 34

Chapter 7

References and Bibliography

Keir, Andy

WM-918 Weather Station Communication Protocol

2001

Kruse, Matt

Guide to CGI Scripting

www.mattkruse.com/info/cgi/

Waterfield, Bob

WX200 / WM918 Modifications and Fixes

www.qsl.net/zllvfo/wx200/mods.htm

Z. A. Samani and M. Pessarakli,

Estimating Potential Crop Evapotranspiration with Minimum Data

Transactions of the ASAE Vol. 29, No. 2, pp. 522-524

1986

Georgie Mitchell, Ray H Griggs, Verel Benson, and Jimmy Williams

The Penman Potential Evaporation Equation

1997

Liberty, Jesse

Teach Yourself C++ in 21 Days, Fourth Edition

Sams Publishing, 2001

7. References and Bibliography 35

Pennells, Steve

“WA faces 100 years of hot, dry weather”

West Australian 2002

Bogart, Theodore F

“Electronic Devices and Circuits”

Fourth Edition

Prentice Hall, 1997

Brey, Barry B.

“The Intel Microprocessors”

8086/8088, 80186, 80286, 80386, AND 80486

Architecture, Programming, and Interfacing

Third Edition

Prentice Hall, 1994

Allen R. G., Pereira L. S., Raes D, and Smith M.

Crop Evapotranspiration - Guidelines for computing crop water requirements.

FAO Irrigation and Drainage Paper No. 56. Rome, Italy

1998.

Doorenbos, J. and W.O. Pruitt.

“Crop water requirements”

FAO Irrigation and Drainage Paper No. 24. Rome, Italy.

1977.

Hargreaves, G.H. and Z.A. Samani.

“Estimating potential Evapotranspiration.”

Journal of Irrigation and Drainage Division.

1982

7. References and Bibliography 36

Geoff Kite and Peter Droogers

“Comparing Estimates of Actual Evapotranspiration from Satellites, Hydrological

Models, and Field Data: A Case Study from Western Turkey”.

IWMI

2000

Appendix A - Microcontroller Specifications 37

Appendices

Appendix A Microcontroller specifications
Courtesy JKMicro Website

Error! Unknown switch argument.

Error! Unknown switch argument.

Connectors and Jumpers

J1
General I/O & Synchronous Serial

J2
RS-485

J3
COM1

J4
COM2 (Console)

J5
Multi-I/O Bus (General I/O)

J8
Power

J8
Ethernet

JP1
Watchdog NMI Enable

JP2
Socket Memory Type

JP3
Boot Memory Location

Appendix A - Microcontroller Specifications 38

Specifications

Processor Intel 386Ex, 25MHz
Operating System XDOS(MS/PC DOS 3.3 compatible)
Memory 512K SRAM, 512K Flash
Ethernet 10BASE-T, NE2000 compatible

Link status and Activity LEDs
Serial Port 1 RS-232 with 5 handshake lines

COM1, address 0x3F8, IRQ4
115200 baud maximum

Serial Port 2 RS-232 no handshaking or
RS-485 half duplex,
COM2, address 0x2F8, IRQ 3
115200 baud maximum

Digital I/O 10 Bits: P3.0-P3.5 & P1.4-P1.7,
Pin configurable as input or output
P3.3 & P3.4 configurable as interrupts
8mA source/sink.

Watchdog Programmable Timeout,
Generates processor NMI

Sync. Serial Full duplex
Independent Rx and Tx clocks,
Master or Slave operating mode

Supply Voltage 5V DC ±5%
Supply Current 400mA(nominal)
Humidity 5 - 90%, non-condensing
Temperature -20 to +85 °C
Weight 1.6oz (45 gm)
Dimensions 3.75" x 2.50" x 0.63"

(95mm x 63.5mm x 16mm)

I/O Port DC Characteristics

Symbol Parameter MIN MAX Units Condition
VIL Input Low -0.3 0.8 V
VIH Input High 2.0 Vcc+0.3 V
VOL Output Low 0.45 V IOL= 8mA

VOH Output High Vcc-0.5 V
IOH= -
8mA

Appendix A - Microcontroller Specifications 39

Mating Connectors

Connector Mfg MFG P/N JK micro P/N
J1,J3,J4,J5 (2x5) Molex 22-55-2101

Oupiin 4072-2X05H 28-0030
Pins (for 2x5) Molex 16-02-0096

Oupiin 4072-PIN-T 28-0033
J2,J8 (1x3) Molex 22-01-2031

Oupiin 4071-3H 28-0012
J10 (1x8) Molex 22-01-2081

Oupiin 4071-08H 28-0037
Pins (for 1x3, 1x8) Molex 08-50-0114

Oupiin 4071-PIN-T 28-0013

Expansion Options

• 32 pin DIP socket to accept an additional
512K Flash or
512K SRAM or
M-Systems DiskOnChip or
Battery backed clock/calendar w/ 128K SRAM upgrade (20-0074)

• Serial bus (J5) for use with Multi-I/O or µI/O peripheral board

Appendix B - Weather Station Specifications 40

Appendix B Weather Station Specifications

Unit Dimensions 178 x 108 x 43 mm.
Uses 8 batteries 'AAA' 1.5v.
Including main adaptor 12v DC.
Weight: 315g.

Error! Unknown switch argument.

Temperature / Humidity
Thermometer
Temperature for in and Out
Measuring range In: O°C to +50°C, Out: -40°C to +60°C
Temperature alarm
Resolution: 0.1'C

Hygrometer
Relative humidity for In and Out
Measuring range In/Out: 10% to 97%
Humidity alarm
Resolution: 1%

Error! Unknown switch argument.

Wind Speed and Direction
 Wind meter
Measuring range for wind speed: 0 to 56 m/s

Appendix B - Weather Station Specifications 41

Wind speed alarm
Resolution for wind speed: 0.2 m/s
Measuring range for wind direction: 0° to 359° * Wind speed measurement accuracy:
± 8°
Resolution for wind direction: 1°
 Wind Chill
Measuring range -85°C to +60°C
Wind chill alarm
Resolution: 1°C

Rainfall
Rainfall counter
Measuring range: O to 9.999 mm
Resolution: 1 mm
Measuring time - accumulative: 24 hours
Measuring time: 1 impulse per 1mm rainfall (equivalent to 1 litre/m)

Barometer
Absolute barometric pressure or relative sea level barometric pressure
Measuring range: 795 mbar to 1050 mbar
Weather forecast indication by symbols
Pressure trend bar display: rising, steady, falling
Pressure alarm
Resolution: 1 mbar
Pressure measuring time: 15 minutes

Dew Point
Dew point for In and Out
Measuring range In/Out: 0°C to + 59°C
In/Out measurement accuracy: 25% to 90%: ±9°C
Dew point alarm
Resolution: 1°C

Appendix C – Weather Station Data Protocol 42

Appendix C Weather Station Data Protocol

Protocol of Oregon Scientific WX-918 Electronic Weather Station

See references for credits

Blank entries indicate undefined or unknown data.
==

Byte Nibble Bit(s) Datum Description 'part' of lo<format<hi unit @ resolution
==

8F. 0 HH all Group 8F --
8F. 1 DD all Time Second 0<ab<59 @ 1
8F. 2 DD all Time Minute 0<ab<59 @ 1
8F. 3 DD all Time Hour 0<ab<23 @ 1
8F. 4 DD all Time Day 1<ab<31 @ 1
8F. 5 Bx 0 Time Format: 0=12 Hour, 1=24 Hour
8F. 5 Bx 1 Time Format: 0=Day-Month, 1=Month-Day
8F. 5 Bx 2,3
8F. 5 xH all Time Month: 1=Jan, 2=Feb, ... B=Nov, C=Dec
8F. 6 DD all Time Alarm: Minute
8F. 7 DD all Time Alarm: Hour
8F. 8 DD all Humid Indoor: 10<ab<97 % @ 1
8F. 9 DD all Humid Indoor Hi: <ab> %
8F.10 DD all Humid Indoor Hi: Minute
8F.11 DD all Humid Indoor Hi: Hour
8F.12 DD all Humid Indoor Hi: Day
8F.13 Dx all Humid Indoor Lo: 'b' <ab> %
8F.13 xH all Humid Indoor Hi: Month
8F.14 Dx all Humid Indoor Lo: Minute 'b' of <ab>
8F.14 xD all Humid Indoor Lo: 'a' of <ab> %
8F.15 Dx all Humid Indoor Lo: Hour 'b' of <ab>
8F.15 xD all Humid Indoor Lo: Minute 'a' of <ab>
8F.16 Dx all Humid Indoor Lo: Day 'b' of <ab>
8F.16 xD all Humid Indoor Lo: Hour 'a' of <ab>
8F.17 Hx all Humid Indoor Lo: Month
8F.17 xD all Humid Indoor Lo: Day 'a' of <ab>
8F.18 DD all Humid Indoor Alarm Hi: <ab> %
8F.19 DD all Humid Indoor Alarm Lo: <ab> %
8F.20 DD all Humid Outdoor: 10<ab<97 % @ 1
8F.21 DD all Humid Outdoor Hi: <ab> %
8F.22 DD all Humid Outdoor Hi: Minute
8F.23 DD all Humid Outdoor Hi: Hour
8F.24 DD all Humid Outdoor Hi: Day
8F.25 Dx all Humid Outdoor Lo: 'b' of <ab> %
8F.25 xH all Humid Outdoor Hi: Month
8F.26 Dx all Humid Outdoor Lo: Minute 'b' of <ab>
8F.26 xD all Humid Outdoor Lo: 'a' of <ab> %
8F.27 Dx all Humid Outdoor Lo: Hour 'b' of <ab>
8F.27 xD all Humid Outdoor Lo: Minute 'a' of <ab>
8F.28 Dx all Humid Outdoor Lo: Day 'b' of <ab>
8F.28 xD all Humid Outdoor Lo: Hour 'a' of <ab>

Appendix C – Weather Station Data Protocol 43

8F.29 Hx all Humid Outdoor Lo: Month
8F.29 xD all Humid Outdoor Lo: Day 'a' of <ab>
8F.30 DD all Humid Outdoor Alarm Hi: <ab> %
8F.31 DD all Humid Outdoor Alarm Lo: <ab> %
8F.32 Bx 0 Humid Outdoor: O.R. (out of range) = 1
8F.32 Bx 1
8F.32 Bx 2 Humid Indoor Hi: O.R. = 1
8F.32 Bx 3 Humid Indoor: O.R. = 1
8F.32 xB 0-2
8F.32 xB 3 Humid Outdoor Hi: O.R. = 1
8F.33 Bx 0,1 Humid Humidity Outdoors Alarm Set when both bits = 1
8F.33 Bx 2,3 Humid Humidity Indoors Alarm Set when both bits = 1
8F.33 xB 0-2
8F.33 xB 3 Time Alarm Set = 1
8F.34 HH all Cksum Unsigned sum of first 34 bytes
9F. 0 HH all Group 9F --
9F. 1 DD all Temp Indoor: 'bc' of 0<ab.c<50 degrees C @ 0.1
9F. 2 Dx all Temp Indoor Hi: 'c' of <ab.c> C
9F. 2 xB 0-2 Temp Indoor: 'a' of <ab.c> C
9F. 2 xB 3 Temp Indoor: Sign 0=+, 1=-
9F. 3 BD 0-2,all Temp Indoor Hi: 'ab' of <ab.c> C
9F. 3 Bx 3 Temp Indoor Hi: Sign 0=+, 1=-
9F. 4 DD all Temp Indoor Hi: Minute
9F. 5 DD all Temp Indoor Hi: Hour
9F. 6 DD all Temp Indoor Hi: Day
9F. 7 Dx all Temp Indoor Lo: 'c' of <ab.c> C
9F. 7 xH all Temp Indoor Hi: Month
9F. 8 BD 0-2,all Temp Indoor Lo: 'ab' of <ab.c> C
9F. 8 Bx 3 Temp Indoor Lo: Sign 0=+, 1=-
9F. 9 DD all Temp Indoor Lo: Minute
9F.10 DD all Temp Indoor Lo: Hour
9F.11 DD all Temp Indoor Lo: Day
9F.12 Dx all Temp Indoor Alarm Hi: 'c' of 32<abc<122 deg F @ 1
9F.12 xH all Temp Indoor Lo: Month
9F.13 BD 0,all Temp Indoor Alarm Hi: 'ab' of <abc> F
9F.13 Bx 1-3
9F.14 DD all Temp Indoor Alarm Lo: 'bc' of 32<abc<122 deg F @ 1
9F.15 Bx 0,1
9F.15 Bx 2 Temp Format: 0=degrees C, 1=degrees F
9F.15 Bx 3
9F.15 xB 0 Temp Indoor Alarm Lo: 'a' of <abc> F
9F.15 xB 1-3
9F.16 DD all Temp Outdoor: 'bc' of -40<ab.c<60 degrees C @ 0.1
9F.17 Dx all Temp Outdoor Hi: 'c' of <ab.c> C
9F.17 xB 0-2 Temp Outdoor: 'a' of <ab.c> C
9F.17 xB 3 Temp Outdoor: Sign 0=+, 1=-
9F.18 BD 0-2,all Temp Outdoor Hi: 'ab' of <ab.c> C
9F.18 Bx 3 Temp Outdoor Hi: Sign 0=+, 1=-
9F.19 DD all Temp Outdoor Hi: Minute
9F.20 DD all Temp Outdoor Hi: Hour
9F.21 DD all Temp Outdoor Hi: Day
9F.22 Dx all Temp Outdoor Lo: 'c' of <ab.c> C
9F.22 xH all Temp Outdoor Hi: Month
9F.23 BD 0-2,all Temp Outdoor Lo: 'ab' of <ab.c> C
9F.23 Bx 3 Temp Outdoor Lo: Sign 0=+, 1=-
9F.24 DD all Temp Outdoor Lo: Minute
9F.25 DD all Temp Outdoor Lo: Hour
9F.26 DD all Temp Outdoor Lo: Day
9F.27 Dx all Temp Outdoor Alarm Hi: 'c' of -40<abc<140 deg F @ 1
9F.27 xH all Temp Outdoor Lo: Month

Appendix C – Weather Station Data Protocol 44

9F.28 BD 0,all Temp Outdoor Alarm Hi: 'ab' of <abc> F
9F.28 Bx 1,2
9F.28 Bx 3 Temp Outdoor Alarm Hi: Sign 0=+, 1=-
9F.29 DD all Temp Outdoor Alarm Lo: 'bc' of <abc> F
9F.30 Bx all
9F.30 xB 0 Temp Outdoor Alarm Lo: 'a' of <abc> F
9F.30 xB 1,2
9F.30 xB 3 Temp Outdoor Alarm Lo: Sign 0=+ 1=-
9F.31 BB all
9F.32 Bx 0,1 Temp Temp Outdoors Alarm Set when both bits=1
9F.32 Bx 2,3 Temp Temp Indoors Alarm Set when both bits=1
9F.32 xB all
9F.33 HH all Cksum unsigned sum of first 33 bytes
AF. 0 HH all Group AF --
AF. 1 DD all Barom Local: 'cd' of 795<abcd<1050 mb @ 1
AF. 2 DD all Barom Local: 'ab' of <abcd> mb
AF. 3 DD all Barom SeaLevel: 'de' of 795<abcd.e<1050 mb @ 1
AF. 4 DD all Barom SeaLevel: 'bc' of <abcd.e> mb
AF. 5 Bx 0,1 Barom Format: 0=inches, 1=mm, 2=mb, 3=hpa
AF. 5 Bx 2,3
AF. 5 xD all Barom SeaLevel: 'a' of <abcd.e> mb
AF. 6 Bx 0-2 Barom Trend: 1=Raising, 2=Steady, 4=Falling
AF. 6 Bx 3
AF. 6 xB all Barom Prediction: 1=Sunny, 2=Cloudy, 4=Partly, 8=Rain
AF. 7 DD all Dewpt Indoor: 0<ab<47 degrees C @ 1
AF. 8 DD all Dewpt Indoor Hi: <ab> C
AF. 9 DD all Dewpt Indoor Hi: Minute
AF.10 DD all Dewpt Indoor Hi: Hour
AF.11 DD all Dewpt Indoor Hi: Day
AF.12 Dx all Dewpt Indoor Lo: 'b' of <ab> C
AF.12 xH all Dewpt Indoor Hi: Month
AF.13 Dx all Dewpt Indoor Lo: Minute 'b' of <ab>
AF.13 xD all Dewpt Indoor Lo: 'a' of <ab> C
AF.14 Dx all Dewpt Indoor Lo: Hour 'b' of <ab>
AF.14 xD all Dewpt Indoor Lo: Minute 'a' of <ab>
AF.15 Dx all Dewpt Indoor Lo: Day 'b' of <ab>
AF.15 xD all Dewpt Indoor Lo: Hour 'a' of <ab>
AF.16 Hx all Dewpt Indoor Lo: Month
AF.16 xD all Dewpt Indoor Lo: Day 'a' of <ab>
AF.17 Hx all Dewpt Outdoor Alarm: 0=1 C ... F=16 C
AF.17 xH all Dewpt Indoor Alarm: 0=1 C ... F=16 C
AF.18 DD all Dewpt Outdoor: 0<ab<56 degrees C @ 1
AF.19 DD all Dewpt Outdoor Hi: <ab> C
AF.20 DD all Dewpt Outdoor Hi: Minute
AF.21 DD all Dewpt Outdoor Hi: Hour
AF.22 DD all Dewpt Outdoor Hi: Day
AF.23 Dx all Dewpt Outdoor Lo: 'b' of <ab> C
AF.23 xH all Dewpt Outdoor Hi: Month
AF.24 Dx all Dewpt Outdoor Lo: Minute 'b' of <ab>
AF.24 xD all Dewpt Outdoor Lo: 'a' of <ab> C
AF.25 Dx all Dewpt Outdoor Lo: Hour 'b' of <ab>
AF.25 xD all Dewpt Outdoor Lo: Minute 'a' of <ab>
AF.26 Dx all Dewpt Outdoor Lo: Day 'b' of <ab>
AF.26 xD all Dewpt Outdoor Lo: Hour 'a' of <ab>
AF.27 Hx all Dewpt Outdoor Lo: Month
AF.27 xD all Dewpt Outdoor Lo: Day 'a' of <ab>
AF.28 Bx 0 Dewpt Outdoor Lo: O.R. = 1
AF.28 Bx 1
AF.28 Bx 2 Dewpt Outdoor: O.R. = 1
AF.28 Bx 3 Dewpt Indoor Lo: O.R. = 1

Appendix C – Weather Station Data Protocol 45

AF.28 Bx 0
AF.28 Bx 1 Dewpt Indoor: O.R. = 1
AF.28 Bx 2,3
AF.29 Bx 0
AF.29 Bx 1,2 Dewpt In and Out Alarm Set when both bits=1
AF.29 Bx 3 Barom Alarm Set = 1
AF.29 xH all Barom Alarm: 0=1mb ... F=16mb
AF.30 HH all Cksum unsigned sum of first 30 bytes
BF. 0 HH all Group BF --
BF. 1 DD all Rain Rate: 'bc' of 0<abc<998 mm/hr @ 1
BF. 2 Bx all
BF. 2 xD all Rain Rate: 'a' of <abc> mm/hr
BF. 3 DD all Rain Yesterday: 'cd' of 0<abcd<9999 mm @ 1
BF. 4 DD all Rain Yesterday: 'ab' of <abcd> mm
BF. 5 DD all Rain Total: 'cd' of <abcd> mm
BF. 6 DD all Rain Total: 'ab' of <abcd> mm
BF. 7 DD all Rain Reset: Minute
BF. 8 DD all Rain Reset: Hour
BF. 9 DD all Rain Reset: Day
BF.10 Bx 0
BF.10 Bx 1 Rain Format: 0=mm, 1=inches
BF.10 Bx 2,3
BF.10 xH all Rain Reset: Month
BF.11 DD all Rain Alarm: 'bc' of 0<ab.c<39.3 in/hr @ 0.1
BF.12 Bx 0 Rain Alarm Set = 1
BF.12 Bx 1-2
BF.12 Bx 3 Rain Rate: O.R. = 1
BF.12 xD all Rain Rate Alarm: 'a' of <ab.c> in/hr
BF.13 HH all Cksum Unsigned sum of first 13 bytes
CF. 0 HH all Group CF --
CF. 1 DD all Wind Gust Speed: 'bc' of 0<ab.c<56 m/s @ 0.2
CF. 2 Dx all Wind Gust Dir: 'c' of 0<abc<359 degrees @ 1
CF. 2 xD all Wind Gust Speed: 'a' of <ab.c> m/s
CF. 3 DD all Wind Gust Dir: 'ab' of <abc>
CF. 4 DD all Wind Avg Speed: 'bc' of 0<ab.c<56 m/s @ 0.1
CF. 5 Dx all Wind Avg Dir: 'c' of <abc>
CF. 5 xD all Wind Avg Speed: 'a' of <ab.c> m/s
CF. 6 DD all Wind Avg Dir: 'ab' of <abc>
CF. 7 DD all Wind Hi Speed: 'bc' of <ab.c> m/s
CF. 8 Dx all Wind Hi Dir: 'c' of <abc>
CF. 8 xD all Wind Hi Speed: 'a' of <ab.c> m/s
CF. 9 DD all Wind Hi Dir: 'ab' of <abc>
CF.10 DD all Wind Hi: Minute
CF.11 DD all Wind Hi: Hour
CF.12 DD all Wind Hi: Day
CF.13 Dx all Wind Alarm: 'c' of 0<abc<125 mph @ 1
CF.13 xH all Wind Hi: Month
CF.14 Bx 1-3
CF.14 BD 0,all Wind Alarm: 'ab' of <abc> mph
CF.15 Bx 1
CF.15 Bx 2,3 Wind Format: 0=mph, 1=knots, 2=m/s, 3=kph
CF.15 xB all
CF.16 DD all Chill Temp: -85<ab<60 degrees C @ 1
CF.17 DD all Chill Lo: <ab> C
CF.18 DD all Chill Lo: Minute
CF.19 DD all Chill Lo: Hour
CF.20 DD all Chill Lo: Day
CF.21 Bx 0 Chill Lo: Sign 0=+, 1=-
CF.21 Bx 1 Chill Temp: Sign 0=+, 1=-
CF.21 Bx 2,3

Appendix C – Weather Station Data Protocol 46

CF.21 xH all Chill Lo: Month
CF.22 DD all Chill Alarm: 'bc' of -121<abc<140 degrees F @ 1
CF.23 Bx 0 Chill Alarm: 'a' of <abc> F
CF.23 Bx 1
CF.23 Bx 2 General Power Source 0=AC, 1=DC
CF.23 Bx 3 General Low Battery Indicator = 1
CF.23 xB 0-2
CF.23 xB 3 Chill Alarm: Sign 0=+, 1=-
CF.24 Bx 0-2 General Display Selected: 0=Time, 1=Temp ... 7=Rain
CF.24 Bx 3
CF.24 xB 0,1 General Display Subscreen: 0=first ... 3=fourth
CF.24 xB 2,3 General Display: 0=main, 1=mem, 2=alarm.in, 3=alarm.out
CF.25 Bx 0
CF.25 Bx 1 Wind Hi Speed: O.R. = 1
CF.25 Bx 2 Wind Avg Speed: O.R. = 1
CF.25 Bx 3 Wind Gust Speed: O.R. = 1
CF.25 xB 0
CF.25 xB 1 Chill Alarm Set = 1
CF.25 xB 2 Wind Alarm Set = 1
CF.25 xB 3
CF.26 HH all Cksum Unsigned sum of first 26 bytes

==

Nibble Column:
D-> 4 bit decimal number Range: 0-9
H-> 4 bit hex number Range: 0-15
B-> Bit encoded value Range: Variable
x-> Not defined in this entry

Bits Column:
Bits within defined Nibbles
0 - Lo order
3 - Hi order

General:
All data is sent in the units shown and is independent of the units selected.
Data is sent 9600 baud 8n1.
Sensors that are not functioning or are out of range will return 'EE' as
the measurement.

Cksum:
The last byte in each group is a checksum of that group. It is
calculated by performing an unsigned add of all the bytes in the
group, including the group number but not the checksum byte. The
checksum is the lo-order byte of the sum.

Group Info
Group Length Report Contents
Number (Bytes) Interval Summary
8F 35 10 Sec Time, Humidity
9F 34 10 Sec Temperature
AF 31 10 Sec Barometer, Dew Point
BF 14 10 Sec Rain
CF 27 5 Sec Wind, Wind Chill, General

Appendix D – Web-based User Interface 47

Appendix D Web-based User Interface

Appendix D – Web-based User Interface 48

Appendix E – Hargreaves / Samani Evapotranspiration Model 49

Appendix E Hargreaves / Samani

Evapotranspiration Model

Evapotranspiration (ET) from a well-watered grass has long been used as a reference
value for estimating crop consumptive use.

The Hargreaves model is empirical in nature and with some recent modifications
(Hargreaves and Samani, 1982) takes the form:

Error! Unknown switch argument. (E.1)

where PET is the potential evapotranspiration rate (mm d-1), Ra is the total incoming
extraterrestrial solar radiation in the same units as evaporation), Ct is a temperature
reduction coefficient which is a function of relative humidity (wa), δt is the difference
between the mean monthly maximum and mean monthly minimum temperatures (oF),
and Tavg.d is the mean temperature (oF) in the time step. A relationship between the
temperature reduction coefficient and the relative humidity has been regressed from
measurements made at 18 locations in the United States to account for the reduction
in PET with increased relative humidity:

Error! Unknown switch argument. (E.2)

The following empirical simplifications permit the use of the formula with the sole
input of temperature data, latitude (φ in degrees), and the Julian day (J) to estimate
incoming solar energy (Duffie and Beckman, 1980):

Error! Unknown switch argument. (E.3)

where dr is the relative distance between the earth and the sun given by:

Error! Unknown switch argument. (E.4)

δ is the solar declination (radians) defined by:

Error! Unknown switch argument. (E.5)

and ws is the sunset hour angle (radians) given by:

Error! Unknown switch argument. (E.6)

With these modifications, the Hargreaves equation is more universally applicable, as
it does not require the observed solar input.

A number of independent investigations have compared the estimates of
evapotranspiration from different models. The Hargreaves equation consistently
produces accurate estimates of potential evapotranspiration (as measured using energy

Appendix E – Hargreaves / Samani Evapotranspiration Model 50

balance techniques, the Penman combination equation, or lysimetric observations),
and in some cases, much better than estimates made using other methods (Hargreaves
and Samani, 1982; Mohan, 1991; Saeed, 1986). Mohan (1991) found the Hargreaves
equation to have a high correlation with the Penman combination equation for
estimates of average weekly evapotranspiration in humid regions.

The reason for the success with such an empirical model is because of the theory
which it reflects. In a comparison with the Penman combination equation, the model
considers the following: the incoming solar energy (Ra), the average amount of energy
removed in the form of sensible heat from the amount available for evaporation (δt),
an approximation of the ratio of s(Ta) to the sum of s(Ta) and γ by using the
temperature (T), and a reduction in the driving gradient when the vapour pressure
deficit is small (Ct).

function Samani(maxtemp, mintemp, date, radian){

var delim_num, j=0;

// Move strings over to numbers using eval
kt = eval(document.retrive.kt.value);

 //Get date from var
 delim_num = date.indexOf('/');
 month = date.substring(0,delim_num);
 date = date.substring(delim_num+1, date.length);
 delim_num = date.indexOf('/');
 day = date.substring(0,delim_num);
 date = date.substring(delim_num+1, date.length);
 year = date.substring(0,date.length);

// Convert strings to numbers
month = eval(month);
day = eval(day);
year = eval(year);

// Convert deg F to deg C if nessary
 if(document.retrive.temp_type[0].checked){
 maxtemp = FtoC(maxtemp);
 mintemp = FtoC(mintemp);
 }

// Samani's equation

with(Math){

 j = month -.5 + (day/30.5);

 tc = (maxtemp + mintemp)/2;

 td = maxtemp - mintemp;

 dec1 = -0.00117 - 0.40117 * cos(PI * j/6);

Appendix E – Hargreaves / Samani Evapotranspiration Model 51

 dec2 = -0.042185 * sin(PI * j/6) + 0.00163 * cos(PI * j/3);

 dec = dec1 + dec2 + 0.00208 * sin(PI * j/3);

 es = 1.00016 - 0.032126 * cos(PI * j/6) - 0.003354 * sin(PI * j/6);

 tmpvr1= -tan(radian);

 tmpvr2= tan(dec);

 tmpvr3= tmpvr1 * tmpvr2;

 om = acos(tmpvr3);

 ra1 = 916.732 * (om * sin(radian) * sin(dec) + cos(radian) * cos(dec) * sin(om));

 ra = ra1/es * 10/(596-0.55 * tc);

 if(td < 0) { alert("Data error for the following line: Mintemp is greater than the Maxtemp\n");}

 else{

 pet = (0.0162 * kt) * ra * sqrt(td) * (tc + 17.8);

}

}

// pet is in mm convert to in

pet = (pet/10) * .39;

 return pet;

}

Appendix F – Weather Station Data Extraction Routine 52

Appendix F Weather Station Data Extraction
Routine

/* using _bios_serialcom example (for COM1) */
#include <stdlib.h>
#include <bios.h>
#include <stdio.h>
#include <dos.h>
#include <string.h>
#include <math.h>

#define DTR 0x01 // Data Terminal Ready
#define RTS 0x02 // Ready To Send
#define COM1PORT 0x0000 // Pointer to Location of COM1 port
#define COM2PORT 0x0002 // Pointer to Location of COM2 port
#define COM1 0
#define COM2 1
#define DATA_READY 0x100
#define FALSE 0
#define TRUE !FALSE //Had to add an underscore to TRUE, it may already be defined

#define SETTINGS (0xE0 | 0x00 | 0x02 | 0x00) // 9600,N,7,1

int intNNA, intNNB, intBufferCount, intChkSum, i;
int intChkSum8F, intChkSum9F, intChkSumAF, intChkSumBF, intChkSumCF;
int intChkSumWG, intWDay, intWMonth, intHumMonth, intTsign, intTOutlook;
int intWindGustDir, intWindAvDirection, intWindHiDirection;
int intRainYesterday, intRainTotal;
int NextInt;

char * strNchar, * strStartChar, * strEventMsg, * strErrorMsg;
char * strG8, * strG9, * strGA, * strGB, * strGC;
char * strCsum8F, * strCsum9F, * strCsumAF, * strCsumBF, * strCsumCF;
char * strTempChkSum;
char * strMainString, * strWindString;
char * strWgroup, * strWgCsum, * strTime;
char * strOutSign, * strTHMonth, * strTLMonth, * strOmaxSign;
char * strOminSign, * strInVsign, * strBarTrend, * strDPSign;
char * strRmonth, * strWCSign, * strOutHumTime,* strInHumidity, * strOsTempHiTime;
char * strOutHumidity,* strOutHumHi,* strOutHumDay, * strOsTempHiDate;
char * strOsTempLoTime, * strOsTempLoDate, * strBarometer, * strOutlook;
char * strTotalRainTime, * strTotalRainDate, * strWindHiTime, * strWindHiDate;

float sngDewPoint, sngRainRate, sngTmpRain, sngWindHiGust, sngOsTempHi;
float sngWindGustSpeed, sngWindAvSpeed, sngOutsideTemp, sngOsTempLo;
float sngInsideTemp, sngWindChill;

int blnGoodData; /* boolean value */

/* arrays for serial data */
char NextChar;
unsigned short int byteRawDataArray[142];

/* arrays for the data groups */
char WindGroupArray[54];
char Group8FArray[70];
char Group9FArray[68];
char GroupAFArray[62];
char GroupBFArray[28];
char GroupCFArray[54];

/* Procedures to store the serial data into arrays */
void ChopFullData();
void ChopWindData();

Appendix F – Weather Station Data Extraction Routine 53

// Procedure to convert an integer into a hexadecimal string
// char * Hex(int);

// Procedures to decode the data groups
void Decode8FGroup();
void Decode9FGroup();
void DecodeAFGroup();
void DecodeBFGroup();
void DecodeCFGroup();
void DecodeWindOnlyGroup();

// Procedure to store the weather data into a file w_full.txt
int StoreFullData(void);

// Procedure to store the wind data into a file w_wind.txt
int StoreWindData(void);

// Function to turn a hexadecimal string into an integer
int axtoi(char *hexStg, int numofchars);

// Function to convert an integer string into a value
int aistoi(char *hexStg, int numchars);

// ***
int main(void)

{

int intBufferCount, status, DONE = FALSE;
// in,
// out,

int far *RS232_Addr;
/* Determine port location of COM1.

 0x40:0x00 = COM1 I/O port address
 0x40:0x02 = COM2 I/O port address

*/
 RS232_Addr = (int far *) MK_FP(0x0040, COM1PORT);
 if(!*RS232_Addr)

 return -1;

 _bios_serialcom(0, COM1, SETTINGS);

while(!DONE)
 {

/* Reset DTR and RTS to prepare for send/receive of
 next character.

*/
outportb(*RS232_Addr + 4, DTR | RTS);

/* Get status of com port.
*/
status = _bios_serialcom(3, COM1, 0);
intBufferCount = 0;
if(status & DATA_READY)

// There's a character on the port. Get it and put into string.

/* Either we receive 27 bytes or 141 bytes and the first character must be
either CF or 8F */
while((NextInt =_bios_serialcom(2, COM1, 0) & 0x7F) != 0)

// putch(NextInt); /*- displays to screen characters read */
{
byteRawDataArray[intBufferCount] = NextInt;
intBufferCount++;
}

 /* If there are 27 characters in the buffer then put them into a
 byte array */
 itoa(byteRawDataArray[0], strStartChar, 16);
 if(intBufferCount == 27)

itoa(byteRawDataArray[0], strStartChar, 16);
else

 /* Must have got more than 27 bytes so should have 141 bytes */
{
if(intBufferCount == 140)

{
/* for (i=0; i<=intBufferCount; i++)

Appendix F – Weather Station Data Extraction Routine 54

{
(*byteRawDataArray)[i] = (unsigned short int) strInputBuffer[i];
} *strStartChar */

itoa(byteRawDataArray[0], strStartChar, 16);
}

}
 /* Call the appropriate routine depending on whether the first character
 of the data was a CF or an 8F */
 if(strStartChar == "cf")

 {
 ChopWindData();
 StoreWindData();
 }
else if(strStartChar == "8f")

 {
 ChopFullData();
 StoreFullData();

 }
 }
;

return 0;
}

// ***
void ChopFullData()

/* This routine chops up the full (141 bytes) data and puts it into arrays for
each of the data groups */

/* These are strings which hold raw data extracted from the byteRawDataArray
array */
{

strG8 = "";
strG9 = "";
strGA = "";
strGB = "";
strGC = "";

// intChkSum equals the decimal value of strStartChar
intChkSum = atoi(strStartChar);

/* We've already got the first character (8F) so get the next 34 for a total
of 35 for the 8F group */
for (intNNA = 1; intNNA < 35 ; intNNA++)

{
intNNB = byteRawDataArray[intNNA];
intChkSum = intChkSum + intNNB;
if(intNNA == 34)

intChkSum8F = intChkSum - intNNB;
itoa(intNNB, strNchar, 16);
if(strlen(strNchar) == 1)

strNchar = strcat("0", strNchar);
strcat(strG8, strNchar);
}

strcat(strG8, "8f");

// Get the next 34 characters for the 9F group
intChkSum = 0;
for (intNNA = 35; intNNA < 69 ; intNNA++)

{
intNNB = byteRawDataArray[intNNA];
intChkSum = intChkSum + intNNB;
if(intNNA == 68)

intChkSum9F = intChkSum - intNNB;
itoa(intNNB, strNchar, 16);
if(strlen(strNchar) == 1)

strNchar = strcat("0", strNchar);
strcat(strG9, strNchar);
}

// Get the next 31 characters for the AF group
intChkSum = 0;
for (intNNA = 69; intNNA < 100 ; intNNA++)

{

Appendix F – Weather Station Data Extraction Routine 55

intNNB = byteRawDataArray[intNNA];
intChkSum = intChkSum + intNNB;
if(intNNA == 99)

intChkSumAF = intChkSum - intNNB;
itoa(intNNB, strNchar, 16);
if(strlen(strNchar) == 1)

strNchar = strcat("0", strNchar);
strcat(strGA, strNchar);
}

// Get the next 14 characters for the BF group
intChkSum = 0;
for (intNNA = 100; intNNA < 114 ; intNNA++)

{
intNNB = byteRawDataArray[intNNA];
intChkSum = intChkSum + intNNB;
if(intNNA == 113)

intChkSumBF = intChkSum - intNNB;
itoa(intNNB, strNchar, 16);
if(strlen(strNchar) == 1)

strNchar = strcat("0", strNchar);
strcat(strGB, strNchar);
}

// Get the next 27 characters for the CF group
intChkSum = 0;
for (intNNA = 114; intNNA < 141 ; intNNA++)

{
intNNB = byteRawDataArray[intNNA];
intChkSum = intChkSum + intNNB;
if(intNNA == 140)

intChkSumCF = intChkSum - intNNB;
itoa(intNNB, strNchar, 16);
if(strlen(strNchar) == 1)

strNchar = strcat("0", strNchar);
strcat(strGC, strNchar);
}

/* Now extract the checksums from the groups (the last two
characters in each */

itoa(intChkSum8F, strTempChkSum, 16);
strCsum8F[0] = strTempChkSum[strlen(strTempChkSum) - 2];
strCsum8F[1] = strTempChkSum[strlen(strTempChkSum) - 1];
itoa(intChkSum9F, strTempChkSum, 16);
strCsum9F[0] = strTempChkSum[strlen(strTempChkSum) - 2];
strCsum9F[1] = strTempChkSum[strlen(strTempChkSum) - 1];
itoa(intChkSumAF, strTempChkSum, 16);
strCsumAF[0] = strTempChkSum[strlen(strTempChkSum) - 2];
strCsumAF[1] = strTempChkSum[strlen(strTempChkSum) - 1];
itoa(intChkSumBF, strTempChkSum, 16);
strCsumBF[0] = strTempChkSum[strlen(strTempChkSum) - 2];
strCsumBF[1] = strTempChkSum[strlen(strTempChkSum) - 1];
itoa(intChkSumCF, strTempChkSum, 16);
strCsumCF[0] = strTempChkSum[strlen(strTempChkSum) - 2];
strCsumCF[1] = strTempChkSum[strlen(strTempChkSum) - 1];

strMainString = "";
// Check the checksum for the 8F group
strTempChkSum[0] = strG8[strlen(strG8) - 2];
strTempChkSum[1] = strG8[strlen(strG8) - 1];
if(strTempChkSum != strCsum8F)

{
blnGoodData = FALSE;
goto NoFurtherAction;
}

// Check the checksum for the 9F group
strTempChkSum[0] = strG9[strlen(strG9) - 2];
strTempChkSum[1] = strG9[strlen(strG9) - 1];
if(strTempChkSum != strCsum9F)

{
blnGoodData = FALSE;
goto NoFurtherAction;
}

Appendix F – Weather Station Data Extraction Routine 56

// Check the checksum for the AF group
strTempChkSum[0] = strGA[strlen(strGA) - 2];
strTempChkSum[1] = strGA[strlen(strGA) - 1];
if(strTempChkSum != strCsumAF)

{
blnGoodData = FALSE;
goto NoFurtherAction;
}

// Check the checksum for the BF group
strTempChkSum[0] = strGB[strlen(strGB) - 2];
strTempChkSum[1] = strGB[strlen(strGB) - 1];
if(strTempChkSum != strCsumBF)

{
blnGoodData = FALSE;
goto NoFurtherAction;
}

// Check the checksum for the CF group
strTempChkSum[0] = strGC[strlen(strGC) - 2];
strTempChkSum[1] = strGC[strlen(strGC) - 1];
if(strTempChkSum != strCsumCF)

{
blnGoodData = FALSE;
goto NoFurtherAction;
}

// If we get to this point then all the checksums must be okay so
blnGoodData = TRUE;

// Put the data for each group into an array for each group
for (intNNA = 1; intNNA <= strlen(strG8); intNNA++)

Group8FArray[intNNA] = strG8[intNNA];
for (intNNA = 1; intNNA <= strlen(strG9); intNNA++)

Group9FArray[intNNA] = strG9[intNNA];
for (intNNA = 1; intNNA <= strlen(strGA); intNNA++)

GroupAFArray[intNNA] = strGA[intNNA];
for (intNNA = 1; intNNA <= strlen(strGB); intNNA++)

GroupBFArray[intNNA] = strGB[intNNA];
for (intNNA = 1; intNNA <= strlen(strGC); intNNA++)

GroupCFArray[intNNA] = strGC[intNNA];

NoFurtherAction:
/* The arrays Group8FArray to GroupCFArray contain the data for
the respective groups. We have 5 seconds to process these arrays
before more data arrives. If blnGoodData is True then we call the
extracting and handling routines */

if(blnGoodData == TRUE)
{
Decode8FGroup;
Decode9FGroup;
DecodeAFGroup;
DecodeBFGroup;
DecodeCFGroup;
}

// End of ChopFullData routine
}

// **
void ChopWindData()

/* This routine chops up the wind only (27 bytes) data and puts it
in an array. Note that the array is 0 to 26 which equals 27 bytes */
{
intChkSum = axtoi(strStartChar, 1);

// If the array is the wrong size then abandon this routine
int intArraySize = sizeof(byteRawDataArray);
if(intArraySize != 27)

{
blnGoodData = FALSE;
goto NoAction;
}

Appendix F – Weather Station Data Extraction Routine 57

for (intNNA = 1; intNNA < 27 ; intNNA++)
{
intNNB = byteRawDataArray[intNNA];
intChkSum = intChkSum + intNNB;
itoa(intNNB, strNchar, 16);
if(strlen(strNchar) == 1)

strNchar = strcat("0", strNchar);
strcat(strWindString, strNchar);
}

intChkSumWG = intChkSum - intNNB;
strWgroup = "cf";
strcat(strWgroup, strWindString);
itoa(intChkSumWG, strTempChkSum, 16);
strWgCsum[0] = strTempChkSum[(strlen(strTempChkSum)) - 2];
strWgCsum[1] = strTempChkSum[(strlen(strTempChkSum)) - 1];
strWindString = "";
// Check the checksums
strTempChkSum[0] = strWgroup[(strlen(strWgroup)) - 2];
strTempChkSum[1] = strWgroup[(strlen(strWgroup)) - 1];
if(strTempChkSum != strWgCsum)

{
blnGoodData = FALSE;
goto NoAction;
}
else

blnGoodData = TRUE;

// Put the data into an array
for(intNNA = 1; intNNA < strlen(strWgroup); intNNA++)

WindGroupArray[intNNA] = strWgroup[intNNA];

NoAction:
/* The array WindGroupArray[] holds the data for the wind only data
group. We have 5 seconds before more data arrives so process the
current data unless it is corrupt */
if(blnGoodData == TRUE)

DecodeWindOnlyGroup;

// End of ChopWindData routine
}

// ***
void Decode8FGroup()

{
char * strTempString = "";

// Minute, hour, day and month from the WM-918
strTime = "";
strTime[0] = Group8FArray[7];
strTime[1] = Group8FArray[8];
strTime[2] = ':';
strTime[3] = Group8FArray[5];
strTime[4] = Group8FArray[6];
strTime[5] = ':';
strTime[6] = Group8FArray[3];
strTime[7] = Group8FArray[4];
/* The following line converts the numerical characters stored in
the array into a value, with the second variable being the number
of characters read. */
strTempString = "";
strTempString[0] = Group8FArray[9];
strTempString[1] = Group8FArray[10];
intWDay = atoi(strTempString);
strTempString = "";
strTempString[0] = Group8FArray[12];
intWMonth = axtoi(strTempString, 1);

// Get the current outside humidity value
strOutHumidity = "";
strOutHumidity[0] = Group8FArray[41];
strOutHumidity[1] = Group8FArray[42];

// Get the outside humidity highest recorded value
strOutHumHi ="";
strOutHumHi[0] = Group8FArray[43];

Appendix F – Weather Station Data Extraction Routine 58

strOutHumHi[1] = Group8FArray[44];

// Get the outside humidity highest recorded time hour and minute
strOutHumTime = "";
strOutHumTime[0] = Group8FArray[47];
strOutHumTime[1] = Group8FArray[48];
strOutHumTime[2] = ':';
strOutHumTime[3] = Group8FArray[45];
strOutHumTime[4] = Group8FArray[46];

// Get the outside humidity highest recorded day
strOutHumDay = "";
strOutHumDay[0] = Group8FArray[49];
strOutHumDay[1] = Group8FArray[50];

// Get the outside humidity highest recorded month
strTempString = "";
strTempString[0] = Group8FArray[52];
intHumMonth = axtoi(strTempString, 1);

// Indoor humidity
strInHumidity = "";
strInHumidity[0] = Group8FArray[17];
strInHumidity[1] = Group8FArray[18];

// End of Decode8FArray

}

// ***
void Decode9FGroup()

{
int intTempInt = 0;
float sngTempFloat = 0;
char * strTempString = "";

// Get the current temperature and sign
strTempString = "";
strTempString[0] = Group9FArray[36];
intTsign = axtoi(strTempString, 1);
intTsign = intTsign & 0x8;
if(intTsign == 8)

strOutSign = "-";
else

strOutSign = "+";

// Get temperature
strTempString = "";
strTempString[0] = Group9FArray[36];
intTempInt = axtoi(strTempString, 1);
intTempInt = intTempInt & 0x7;
intTempInt = intTempInt * 10;
sngOutsideTemp = intTempInt;
strTempString = "";
strTempString[0] = Group9FArray[33];
sngOutsideTemp += axtoi(strTempString, 1);
strTempString = "";
strTempString[0] = Group9FArray[34];
intTempInt = axtoi(strTempString, 1);
sngTempFloat = (float)intTempInt / 10.0;
sngOutsideTemp += sngTempFloat;

// Get outdoor temperature highest recorded sign
strTempString = "";
strTempString[0] = Group9FArray[37];
intTsign = axtoi(strTempString, 1);
intTsign = intTempInt & 0x8;

if(intTsign == 8)
strOmaxSign = "-";
else

strOmaxSign = "+";

// Get outdoor temperature highest recorded value
strTempString = "";

Appendix F – Weather Station Data Extraction Routine 59

strTempString[0] = Group9FArray[37];
intTempInt = axtoi(strTempString, 1);
intTempInt = intTempInt & 0x7;
intTempInt = intTempInt * 10;
sngOsTempHi = intTempInt;
strTempString = "";
strTempString[0] = Group9FArray[38];
sngOsTempHi += axtoi(strTempString, 1);
strTempString = "";
strTempString[0] = Group9FArray[35];
intTempInt = axtoi(strTempString, 1);
sngTempFloat = (float)intTempInt / 10.0;
sngOsTempHi += sngTempFloat;

// Get outdoor temperature highest recorded time
strOsTempHiTime = "";
strOsTempHiTime[0] = Group9FArray[41];
strOsTempHiTime[1] = Group9FArray[42];
strOsTempHiTime[2] = ':';
strOsTempHiTime[3] = Group9FArray[39];
strOsTempHiTime[4] = Group9FArray[40];

// Get outdoor temperature highest recorded date
strOsTempHiDate = "";
strOsTempHiDate[0] = Group9FArray[43];
strOsTempHiDate[1] = Group9FArray[44];

// Get outdoor temperature highest recorded month
strTempString = "";
strTempString[0] = Group9FArray[46];
intTempInt = axtoi(strTempString,1);
itoa(intTempInt, strTHMonth, 10);

// Get the outdoor temperature lowest recorded sign
strTempString = "";
strTempString[0] = Group9FArray[47];
intTsign = axtoi(strTempString, 1);
intTsign = intTempInt & 0x8;
if(intTsign == 8)

strOminSign = "-";
else

strOminSign = "+";

// Get outdoor temperature lowest recorded value
strTempString = "";
strTempString[0] = Group9FArray[47];
intTempInt = axtoi(strTempString, 1);
intTempInt = intTempInt & 0x7;
intTempInt = intTempInt * 10;
sngOsTempLo = intTempInt;
strTempString = "";
strTempString[0] = Group9FArray[48];
sngOsTempLo += axtoi(strTempString, 1);
strTempString = "";
strTempString[0] = Group9FArray[45];
intTempInt = axtoi(strTempString, 1);
sngTempFloat = (float)intTempInt / 10.0;
sngOsTempLo += sngTempFloat;

// Get outdoor temperature lowest recorded time
strOsTempLoTime = "";
strOsTempLoTime[0] = Group9FArray[51];
strOsTempLoTime[1] = Group9FArray[52];
strOsTempLoTime[2] = ':';
strOsTempLoTime[3] = Group9FArray[49];
strOsTempLoTime[4] = Group9FArray[50];

// Get outdoor temperature lowest recorded date
strOsTempLoDate = "";
strOsTempLoDate[0] = Group9FArray[53];
strOsTempLoDate[1] = Group9FArray[54];

// Get outdoor temperature lowest recorded month
strTempString = "";
strTempString[0] = Group9FArray[56];
intTempInt = axtoi(strTempString,1);

Appendix F – Weather Station Data Extraction Routine 60

itoa(intTempInt, strTLMonth, 10);

// Get the current indoor temperature and sign
strTempString = "";
strTempString[0] = Group9FArray[6];
intTsign = axtoi(strTempString, 1);
intTsign = intTempInt & 0x8;
if(intTsign == 8)

strInVsign = "-";
else

strInVsign = "+";

// get indoor temp
strTempString = "";
strTempString[0] = Group9FArray[6];
intTempInt = axtoi(strTempString, 1);
intTempInt = intTempInt & 0x7;
intTempInt = intTempInt * 10;
sngInsideTemp = intTempInt;
strTempString = "";
strTempString[0] = Group9FArray[3];
sngInsideTemp += axtoi(strTempString, 1);
strTempString = "";
strTempString[0] = Group9FArray[4];
intTempInt = axtoi(strTempString, 1);
sngTempFloat = (float)intTempInt / 10.0;
sngInsideTemp += sngTempFloat;

// End of Decode9FGroup
}

// ***
void DecodeAFGroup()

{
char * strTempString = "";

// Get the current barometer value
strBarometer = "";
strBarometer[0] = GroupAFArray[12];
strBarometer[1] = GroupAFArray[9];
strBarometer[2] = GroupAFArray[10];
strBarometer[3] = GroupAFArray[7];
strBarometer[4] = '.';
strBarometer[5] = GroupAFArray[8];

// Get the barometer trend
switch (GroupAFArray[13])

{
case 1 : strBarTrend = "Rising"; break;
case 2 : strBarTrend = "Steady"; break;
case 4 : strBarTrend = "Falling"; break;
}

// Get the current dewpoint in Celcius
strTempString = "";
strTempString[0] = GroupAFArray[37];
strTempString[1] = GroupAFArray[38];
sngDewPoint = atoi(strTempString);

// Get the Dewpoint sign
if(sngDewPoint >= 0)

strDPSign = "+";
else

strDPSign = "-";

// Get the current outlook
// *********** Might have to create new routine for binary conversion
strTempString = "";
strTempString[0] = GroupAFArray[14];
switch (axtoi(strTempString, 1)) // Evaluate the forecast

{
case 1 : strOutlook = "Fine"; break;
case 2 : strOutlook = "Cloudy"; break;
case 4 : strOutlook = "Part Cloudy"; break;
case 8 : strOutlook = "Rain"; break;

Appendix F – Weather Station Data Extraction Routine 61

}

// End of DecodeAFGroup
}

// **
void DecodeBFGroup()

{
int intTempInt = 0;
char * strTempString = "";
char chTempChar;

// Get the current rainfall rate
chTempChar = GroupBFArray[6] & 0xf;
sngRainRate = axtoi(&chTempChar, 1) * 100;
sngRainRate += axtoi(&GroupBFArray[3],2);

// Get the rainfall yesterday (from the weather station)
strTempString = "";
strTempString[0] = GroupBFArray[9];
strTempString[1] = GroupBFArray[10];
strTempString[2] = GroupBFArray[7];
strTempString[3] = GroupBFArray[8];
intRainYesterday = atoi(strTempString);

// Get the rainfall total (since last WM -918 reset)
strTempString = "";
strTempString[0] = GroupBFArray[13];
strTempString[1] = GroupBFArray[14];
strTempString[2] = GroupBFArray[11];
strTempString[3] = GroupBFArray[12];
intRainTotal = atoi(strTempString);

// Get the rainfall total of last reset hours and minutes
strTotalRainTime = "";
strTotalRainTime[0] = GroupBFArray[17];
strTotalRainTime[1] = GroupBFArray[18];
strTotalRainTime[2] = ':';
strTotalRainTime[3] = GroupBFArray[15];
strTotalRainTime[4] = GroupBFArray[16];

// Get the rainfall total of last reset day
strTotalRainDate = "";
strTotalRainDate[0] = GroupBFArray[19];
strTotalRainDate[1] = GroupBFArray[20];

// Get the rainfall total time of last reset month
strTempString = "";
strTempString[0] = GroupBFArray[22];
intTempInt = axtoi(strTempString,1);
itoa(intTempInt, strRmonth, 10);

// End of DecodeBFGroup routine
}

// ***
void DecodeCFGroup()

{
int intTempInt = 0;
float sngTempFloat = 0;
char * strTempString = "";

// Get the current wind speed (gust)
strTempString = "";
strTempString[0] = GroupCFArray[6];
intTempInt = axtoi(strTempString, 1);
intTempInt = intTempInt * 10;
sngWindGustSpeed = intTempInt;
strTempString = "";
strTempString[0] = GroupCFArray[3];
sngWindGustSpeed += axtoi(strTempString, 1);
strTempString = "";
strTempString[0] = GroupCFArray[4];
intTempInt = axtoi(strTempString, 1);

Appendix F – Weather Station Data Extraction Routine 62

sngTempFloat = (float)intTempInt / 10.0;
sngWindGustSpeed += sngTempFloat;

// Get the current wind direction (gust)
strTempString = "";
strTempString[0]= GroupCFArray[7];
strTempString[1]= GroupCFArray[8];
strTempString[2]= GroupCFArray[5];
intWindGustDir = atoi(strTempString);

// Get the current wind speed (average)
strTempString = "";
strTempString[0] = GroupCFArray[12];
intTempInt = axtoi(strTempString, 1);
intTempInt = intTempInt * 10;
sngWindAvSpeed = intTempInt;
strTempString = "";
strTempString[0] = GroupCFArray[9];
sngWindAvSpeed += axtoi(strTempString, 1);
strTempString = "";
strTempString[0] = GroupCFArray[10];
intTempInt = axtoi(strTempString, 1);
sngTempFloat = (float)intTempInt / 10.0;
sngWindAvSpeed += sngTempFloat;
// ********************Need to check how many decimal places

// Get the current wind direction (average)
strTempString = "";
strTempString[0] = GroupCFArray[13];
strTempString[1] = GroupCFArray[14];
strTempString[2] = GroupCFArray[11];
intWindAvDirection = atoi(strTempString);

// Get the wind highest recorded gust
strTempString = "";
strTempString[0] = GroupCFArray[18];
intTempInt = axtoi(strTempString, 1);
intTempInt = intTempInt * 10;
sngWindHiGust = intTempInt;
strTempString = "";
strTempString[0] = GroupCFArray[15];
sngWindHiGust += axtoi(strTempString, 1);
strTempString = "";
strTempString[0] = GroupCFArray[16];
intTempInt = axtoi(strTempString, 1);
sngTempFloat = (float)intTempInt / 10.0;
sngWindHiGust += sngTempFloat;

// Get the wind highest recorded gust direction
strTempString = "";
strTempString[0] = GroupCFArray[19];
strTempString[1] = GroupCFArray[20];
strTempString[2] = GroupCFArray[17];
intWindHiDirection = atoi(strTempString);

// Get the wind highest recorded gust hours and minutes
strWindHiTime = "";
strWindHiTime[0] = GroupCFArray[23];
strWindHiTime[1] = GroupCFArray[24];
strWindHiTime[2] = ':';
strWindHiTime[3] = GroupCFArray[21];
strWindHiTime[4] = GroupCFArray[22];

// Get the wind highest recorded gust date
strWindHiDate = "";
strWindHiDate[0] = GroupCFArray[25];
strWindHiDate[1] = GroupCFArray[26];

// Get the wind highest recorded gust month
strTempString = "";
strTempString[0] = GroupCFArray[28];
intHumMonth = axtoi(strTempString,1);

// Get the wind chill sign
strTempString = "";
strTempString[0] = GroupCFArray[43];

Appendix F – Weather Station Data Extraction Routine 63

intTsign = axtoi(strTempString, 1);
intTsign = intTempInt & 0x2;
if(intTsign == 8)

strWCSign = "-";
else

strWCSign = "+";

// Get the wind chill value
strTempString = "";
strTempString[0] = GroupCFArray[33];
strTempString[1] = GroupCFArray[34];
sngWindChill = atoi(strTempString);

/* The low battery indicator
char temphex = GroupCFArray[47] & 0x8;
if (axtoi(&temphex,1) == 8)

;// Batterys are flat
else
; // Batterys are OK

*/
// End of DecodeCFGroup routine
}

// ***
void DecodeWindOnlyGroup()

{
// This is the wind only group which is mainly CF
int intTempInt = 0;
float sngTempFloat = 0;
char * strTempString = "";

// Get the current wind speed (gust)
strTempString = "";
strTempString[0] = WindGroupArray[6];
intTempInt = axtoi(strTempString, 1);
intTempInt = intTempInt * 10;
sngWindGustSpeed = intTempInt;
strTempString = "";
strTempString[0] = WindGroupArray[3];
sngWindGustSpeed += axtoi(strTempString, 1);
strTempString = "";
strTempString[0] = WindGroupArray[4];
intTempInt = axtoi(strTempString, 1);
sngTempFloat = (float)intTempInt / 10.0;
sngWindGustSpeed += sngTempFloat;

// Get the current wind direction (gust)
strTempString = "";
strTempString[0] = WindGroupArray[7];
strTempString[1] = WindGroupArray[8];
strTempString[2] = WindGroupArray[5];
intWindGustDir = atoi(strTempString);

// Get the current wind speed (average)
strTempString = "";
strTempString[0] = WindGroupArray[12];
intTempInt = axtoi(strTempString, 1);
intTempInt = intTempInt * 10;
sngWindAvSpeed = intTempInt;
strTempString = "";
strTempString[0] = WindGroupArray[9];
sngWindAvSpeed += axtoi(strTempString, 1);
strTempString = "";
strTempString[0] = WindGroupArray[10];
intTempInt = axtoi(strTempString, 1);
sngTempFloat = (float)intTempInt / 10.0;
sngWindAvSpeed += sngTempFloat;
// ********************Need to check how many decimal places
// Need to check how many decimal places

// Get the current wind direction (average)
strTempString = "";
strTempString[0] = WindGroupArray[13];
strTempString[1] = WindGroupArray[14];
strTempString[2] = WindGroupArray[11];

Appendix F – Weather Station Data Extraction Routine 64

intWindAvDirection = atoi(strTempString);

// Get the wind highest recorded gust
strTempString = "";
strTempString[0] = WindGroupArray[18];
intTempInt = axtoi(strTempString, 1);
intTempInt = intTempInt * 10;
sngWindHiGust = intTempInt;
strTempString = "";
strTempString[0] = WindGroupArray[15];
sngWindHiGust += axtoi(strTempString, 1);
strTempString = "";
strTempString[0] = WindGroupArray[16];
intTempInt = axtoi(strTempString, 1);
sngTempFloat = (float)intTempInt / 10.0;
sngWindHiGust += sngTempFloat;

// Get the wind highest recorded gust direction
strTempString = "";
strTempString[0] = WindGroupArray[19];
strTempString[1] = WindGroupArray[20];
strTempString[2] = WindGroupArray[17];
intWindHiDirection = atoi(strTempString);

// Get the wind highest recorded gust hours and minutes
strWindHiTime = "";
strWindHiTime[0] = WindGroupArray[23];
strWindHiTime[1] = WindGroupArray[24];
strWindHiTime[2] = ':';
strWindHiTime[3] = WindGroupArray[21];
strWindHiTime[4] = WindGroupArray[22];

// Get the wind highest recorded gust date
strWindHiDate = "";
strWindHiDate[0] = WindGroupArray[25];
strWindHiDate[1] = WindGroupArray[26];

// Get the wind highest recorded gust month
strTempString = "";
strTempString[0] = WindGroupArray[28];
intHumMonth = axtoi(strTempString,1);

// Get the wind chill sign
strTempString = "";
strTempString[0] = WindGroupArray[43];
intTsign = axtoi(strTempString, 1);
intTsign = intTempInt & 0x2;
if(intTsign == 8)

strWCSign = "-";
else

strWCSign = "+";

// Get the wind chill value
strTempString = "";
strTempString[0] = WindGroupArray[33];
strTempString[1] = WindGroupArray[34];
sngWindChill = atoi(strTempString);

// End of DecodeWindOnlyGroup routine
}

// ***
// ***

// ***
// ***
/* Description:
This function provides a method to read hexadecimal numbers.
The atoi() function ignores the A-F digits in a hexadecimal
number. In fact, the first non-digit character in the string
passed to atoi() ends the conversion.
The following example converts a four-character text string that
represents a hexadecimal number into an integer. It can be used
as a template to create other ASCII-to-number conversions.
The example code defines a C\C++ function called axtoi() that

Appendix F – Weather Station Data Extraction Routine 65

does the conversion. It includes a short main() that to test the
function. numofchars was originally set at a constant 4 */

int axtoi(char *hexStg, int numofchars)
 {
 int n = 0; // position in string
 int m = 0; // position in digit[] to shift
 int count; // loop index
 int intValue = 0; // integer value of hex string
 int digit[5] = {0,0,0,0,0}; // hold values to convert

 while (n < numofchars) {
 if (hexStg[n]=='\0')

 break;
 if (hexStg[n] > 0x29 && hexStg[n] < 0x40) //if 0 to 9

 digit[n] = hexStg[n] & 0x0f; //convert to int
 else if (hexStg[n] >='a' && hexStg[n] <= 'f') //if a to f

 digit[n] = (hexStg[n] & 0x0f) + 9; //convert to int
 else if (hexStg[n] >='A' && hexStg[n] <= 'F') //if A to F

 digit[n] = (hexStg[n] & 0x0f) + 9; //convert to int
 else break;
 n++;

 }
 count = n;
 m = n - 1;
 n = 0;
 while(n < count) {

 // digit[n] is value of hex digit at position n
 // (m << 2) is the number of positions to shift
 // OR the bits into return value
 intValue = intValue | (digit[n] << (m << 2));
 m--; // adjust the position to set
 n++; // next digit to process

 }
 return (intValue);
}

/* **

int aistoi(char *strInt, int numchars) {
 int n = 0; // position in string
 int intValue = 0; // integer value of hex string
 int digit[5]; // hold values to convert
 while (n < numchars) {

 if (strInt[n]=='\0')
 break;

 if (strInt[n] > 0x29 && strInt[n] < 0x40) //if 0 to 9
 digit[n] = strInt[n] & 0x0f; //convert to int
 else break;

 n++;
 }
 n = 0;
 while(n < numchars) {

 // digit[n] is value of the digit at position n
 intValue = intValue + (digit[n] * pow10(numchars - n -1));
 n++; // next digit to process

 }
 return (intValue);
}

***/
int StoreFullData(void)
{
FILE *stream;
/* open a file for update */
stream = fopen("W_FULL.TXT", "w+");

/* write a string into the file */
// 8F Group
fprintf(stream, "%s,%i,%i,%s,%s,%s,%s,%i,%s,",

strTime, intWDay, intWMonth, strOutHumidity, strOutHumHi, strOutHumTime,
strOutHumDay, intHumMonth, strInHumidity);

// 9F Group
fprintf(stream, "%s,%.1f,%s,%.1f,%s,%s,%s,%s,%.1f,%s,%s,%s,%s,%.1f,",

strOutSign, sngOutsideTemp, strOmaxSign, sngOsTempHi, strOsTempHiTime,
strOsTempHiDate, strTHMonth, strOminSign, sngOsTempLo, strOsTempLoTime,

Appendix F – Weather Station Data Extraction Routine 66

strOsTempLoDate, strTLMonth, strInVsign, sngInsideTemp);
// AF Group
fprintf(stream, "%s,%s,%.1f,%s,%s,",

strBarometer, strBarTrend, sngDewPoint, strDPSign, strOutlook);
// BF Group
fprintf(stream, "%.1f,%i,%i,%s,%s,",

sngRainRate, intRainYesterday, intRainTotal, strTotalRainDate, strRmonth);
// CF Group
fprintf(stream, "%.1f,%i,%.1f,%i,%.1f,%i,%s,%i,%s,%.1f",

sngWindGustSpeed, intWindGustDir, sngWindAvSpeed, intWindAvDirection,
sngWindHiGust, intWindHiDirection, strWindHiTime, intHumMonth,
strWCSign, sngWindChill);

fclose(stream);
return 0;
}

// **
int StoreWindData(void)

{
FILE *stream;
/* open a file for update */
stream = fopen("W_WIND.TXT", "w+");

/* write a string into the file */
// WindOnly Group
fprintf(stream, "%.1f,%i,%.1f,%i,%.1f,%i,%s,%i,%s,%.1f",

sngWindGustSpeed, intWindGustDir, sngWindAvSpeed, intWindAvDirection,
sngWindHiGust, intWindHiDirection, strWindHiTime, intHumMonth,
strWCSign, sngWindChill);

fclose(stream);
return 0;
}

Appendix G – Valve Control Routine 67

Appendix G Valve Control Routine

/***
* Needs the dos.h library called earlier
* for the inportb function. Needs
* PORT_C and PORT_D set in the main
* function
***/
/***
* Fuction ValvesOff
*
* Call during initialisation and at he completion
* of a reticulation cycle - ie after all required
* valves have been operated.
***/
void ValvesOff()
{
 outportb(PORT_C, 0x00); /* turn off master valve */
 outportb(PORT_D, 0x00); /* turn off other valves */
}

/***
* Function InitialisePort
*
* Call to initialise port directions and clear
* valves.
***/
void InitialisePort()
{
 unsigned char portDir;

portDir = inportb(PORT_DIR); /* get value of port direction register */
portDir |= 0x0d; /* set ports C and D for output */

 outportb(PORT_DIR, portDir); /* write back to direction register */
ValvesOff; /* turn all valves off */

}

/***
* Function ValveOn
*
* Turns on required valve 1-16
***/
void ValveOn(int v)
{

Appendix G – Valve Control Routine 68

 unsigned char portD;
 unsigned char portC;
 portC = 0x4;

 switch (v)
 { case 1: portD = 0x02;

case 2: portD = 0x03;
case 3: portD = 0x04;
case 4: portD = 0x05;
case 5: portD = 0x08;
case 6: portD = 0x09;
case 7: portD = 0x10;
case 8: portD = 0x11;
case 9: portD = 0x20;
case 10:portD = 0x21;
case 11:portD = 0x40;
case 12:portD = 0x41;
case 13:portD = 0x80;
case 14:portD = 0x81;
case 15:{

portD = 0x00;
portC = 0x05; }

case 16: {
portD = 0x01;
portC = 0x05; }

}

outportb(PORT_D, portD); /* turn on valve (1-14) */
outportb(PORT_C, portC); /* turn on master valve (if not on) */

}

List of Figures 69

List of Figures

Figure 3.1 – Photo of Relay board 12

Figure 3.2 – Relay Board Schematic 13

Figure 3.3 – Weather station data protocol table 15

Figure 3.4 – Evapotranspiration definition 16

Figure 3.5 – Crop Water Requirement Determination Process 17

Figure 3.6 – Test Bench Setup Photo 19

Figure 3.7 – On-site sensor placement 21

Figure 3.8 – Temperature / Humidity Sensor Placement 21

Figure 3.9 – Station Details 22

Figure 3.10 – Basic System Connectivity 24

Figure 4.1 – August Weather Log Graphed 25

Figure 4.2 – August Weather Log Data Table 26

Figure 4.3 – August Evaporation/ Adjustment Graph 26

Figure 4.4 – August Evapotranspiration/ Adjustment Graph Data Table 27

Figure 4.4 – August Cycle Durations for Rear Lawn 1 28

Figure 4.5 – August Cycle Durations for Rear Lawn 4 29

